
Supplemental figure 1.

IP: Ca_v1.2α1

WB: Ca_v1.2α1 _____-250kD WB: Ca_vβ₂ ____-75kD

Supplemental Figure 2

Supplemental figure 3.

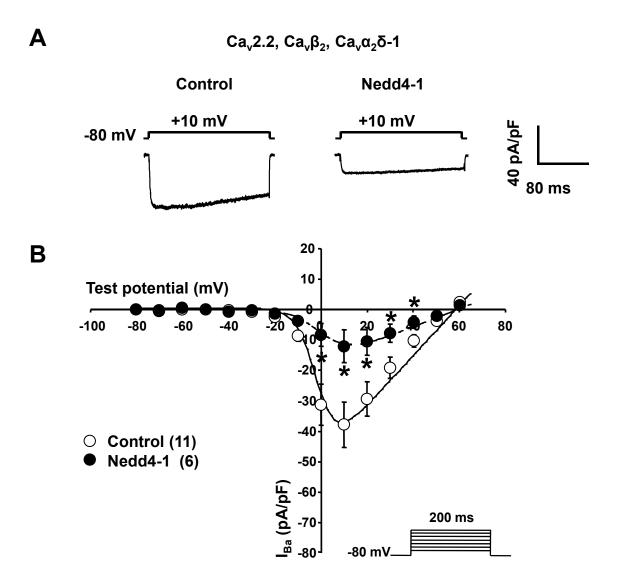
Whole cell lysate

WB: Ca_ν1.2α1

Pull-Down GST-S5A

WB: Ca_v1.2α1

Supplemental figure 4.


Whole cell lysate

Pull-Down GST-S5A

Supplemental figure 5.

Supplemental Table 1. Effect of Nedd4-1 and Nedd4-1C867S on Ca_v biophysical properties. $Ca_v1.2\alpha1/\alpha_2\delta$ -1 channels were expressed alone or together with $Ca_v\beta_1$, $Ca_v\beta_2$, $Ca_v\beta_2$ Y221A, $Ca_v\beta_3$, $Ca_v\beta_4$. $Ca_v1.2\alpha1/\alpha_2\delta$ -1 channels were expressed with $Ca_v\beta_2$. All experiments were performed with 5 mM BaCl₂ with the exception of $Ca_v1.2\alpha1/\alpha_2\delta$ -1 currents recorded in 20 mMBaCl₂ extracellular solution. The upper and middle horizontal panels indicate the biophysical parameters corresponding to steady-state activation (SSA) and steady-state inactivation (SSI). V_{50} values indicate the respective voltage at which 50% of the channels are activated (V_{50} act), or inactivated (V_{50} inact), and k the slopes of the corresponding Botzmann-fitted curves described in Material and Methods. The lower panel shows the corresponding current densities and percentage of variation (%) from the controls (100%). Values are means \pm SEM. The number of cells is indicated in parentheses. Values were compared versus control cells transfected with the channels only. *P<0.05, **P<0.01 and ***P<0.001. ND: Not Determined.

Supplemental Fig. 1. Co-immunoprecipitation of $Ca_v\beta_2$ with $Ca_v1.2\alpha1$ subunits. $Ca_v1.2\alpha1$ was immunoprecipitated with anti- $Ca_v1.2\alpha1$ antibodies. Western-blots show that the amount of $Ca_v\beta_2$ co-immunoprecipitated with $Ca_v1.2\alpha1$ was similar in control and Nedd4-1-transfected cells. Experiments were performed in duplicate.

Supplemental Fig.2. Immunocytochemistry and confocal imaging experiments showing the distribution of $Ca_v1.2$ channels in control and Nedd4-1-transfected cells. $Ca_v1.2$ was detected using an anti- $Ca_v1.2$ -ATTO-488 fluorescent primary antibody. Successful co-expression of c-myc-Nedd4-1 was assessed using mouse anti-c-myc primary and AlexaFluor594 anti-mouse secondary antibodies. Scale bars are 10 μ m.

Supplemental Fig. 3. Nedd4-1C867S fails to regulate the ubiquitylation of $Ca_v1.2\alpha1$. Ubiquitylated proteins were pulled-down using ubiquitin-binding GST-S5A and the presence of $Ca_v1.2\alpha1$ in the isolated fraction was assessed by Western-blotting using anti- $Ca_v1.2\alpha1$ antibodies. Western-blots show that Nedd4-1C867S did not modify the amount of $Ca_v1.2\alpha1$ proteins recovered from whole-cell lysates or GST-S5A pulled-down fractions. Experiments were performed in duplicate.

Supplemental Fig.4. $Ca_{\nu}\alpha_{2}\delta$ -1 is not ubiquitylated by Nedd4-1. Ubiquitylated proteins were pulled-down using ubiquitin-binding GST-S5A and the presence of $Ca_{\nu}\alpha_{2}\delta$ -1 in the isolated fraction was assessed by Western-blotting using anti- $Ca_{\nu}\alpha_{2}\delta$ -1 antibodies. Representative Western-blot showing that $Ca_{\nu}\alpha_{2}\delta$ -1 is endogenously ubiquitylated and co-expressing $Ca_{\nu}\beta$ promotes its ubiquitylation, however there was no effect of Nedd4-1 on the basal ubiquitylation of $Ca_{\nu}\alpha_{2}\delta$ -1(five independent experiments). Note that as for $Ca_{\nu}1.2\alpha1$, Nedd4-1 similarly reduced the amount of $Ca_{\nu}\alpha_{2}\delta$ -1 recovered in whole-cell lysates and GST-S5A pulled-down fractions, when expressed together with $Ca_{\nu}\beta$.

Supplemental Fig.5. Nedd4-1 down-regulates $Ca_v 2.2$ channels. A, Representative whole-cell current traces and B, I-V relationships recorded from tsA-201 cells transfected with $Ca_v 2.2\alpha 1/Ca_v \beta_2/Ca_v \alpha_2 \delta$ -1 channels alone (Control, \circ) or together with Nedd4-1 (\bullet). The number of cells recorded from is indicated in parentheses. *P<0.05 when compared with control cells transfected with $Ca_v 2.2\alpha 1/Ca_v \beta_2/Ca_v \alpha_2 \delta$ -1 channels alone.

Supplemental Material and Methods:

Immunocytochemistry: HEK-293 cells were plated on fibronectin-coated glass-bottom dishes (MatTek) 24 hours before experiment. Forty-eight hours post-transfection, cells were washed once with PBS then fixed using 4% paraformaldehyde PBS pH7.4 for 10 minutes at room temperature. Cells were permeabilized with PBS containing 0.02% Triton X100 (twice for 7 minutes), followed by a 15-minute block with TBS containing 10% goat serum. (Alomone, Jerusalem, Israel) and mouse anti-C-myc (M4439; Sigma-Aldrich Chemie, Postfach, Switzerland) antibodies were used at a dilution of 1/20 and 1/100, respectively and incubated overnight at 4°C. AlexaFluor594 goat anti-rabbit secondary antibodies were incubated 2 hours at room temperature. Confocal images were acquired with a Zeiss LSM-510 confocal laser scanning microscope, using a 60X (1.4 NA) oil-immersion objective. Optical slices were 0.8μm thick. Images were acquired using an argon laser (excitation: 488 nm; emission: BP505–530 nm) and a He-Ne laser (excitation: 543 nm; emission: LP650 nm). Image J was used for analysis.