STRUCTURAL BASIS OF MOLECULAR RECOGNITION BY LEISHMANIA SMALL HYDROPHILIC ENDOPLASMIC RETICULUM-ASSOCIATED PROTEIN, SHERP, AT MEMBRANE SURFACES

Benjamin Moore[‡], Andrew J Miles[¶], Cristina Guerra-Giraldez^{||}, Peter Simpson[§], Momi Iwata^{§**}, B A Wallace[¶], Stephen J Matthews[§], Deborah F Smith^{||}, and Katherine A Brown^{‡‡‡1}

From the [‡]Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection and the [§]Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, and the [¶]Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, and the [∥]Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5YW, and the **Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, United Kingdom, and the ^{‡‡}Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, Texas 78712, USA ¹To whom correspondence should be addressed: Division of Cell and Molecular Biology, CMMI, Flowers Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom. Tel.: 44-20-7594-5298; Fax: 44-20-7594-5297; E-mail: k.brown@imperial.ac.uk FIGURE S1 2D ¹H-¹⁵N HSQC NMR spectrum of *L. major* SHERP at 4 °C in the absence of SDS or phospholipids. The poor amide ¹H dispersion is indicative of a lack of tertiary structure.

FIGURE S2 ¹H-¹⁵N heteronuclear NOE spectrum of *L. major* SHERP at 4 °C in the absence of SDS or phospholipids. The spectrum shown is a summation of the reference and NOE spectrum corresponding to (0.8 times the reference – NOE spectrum). Residual signals thus correspond to those with a significant ¹H-¹⁵N NOE contribution arising from extensive internal motion on the ps timescale, which for the free SHERP is observed in essentially all residues (for comparison with Figure S2).

FIGURE S3 SDS-PAGE avidin-column fractions analyzed to identify SHERP-SBED complexes containing a biotinylated label. Lanes labeled correspond to the flow-through (FT), wash (W) and elution (E) fractions. Bands labeled with numbers correspond to sample numbers shown in Table S1 below.

FIGURE S4 Amino acid sequence alignment between the L. major and T. thermophilus

V-ATPase subunit B. A ClustalW2 alignment is shown. Identical residues (blue), conserved substitutions (green) and semi-conserved substitutions (yellow) are colored according to ClustalW2 conventions (see http://www.ebi.ac.uk/Tools/clustalw2/index.html and Larkin M.A., et al. (2007) *Bioinformatics* **23**, 2947-2948).

		*	20	*	40	*	60		
L maj subB	:	MGRDEEHVRVLSKQ	ELLATHIKEL	NESYSVKPHL	EYTTIRA <mark>VN</mark> G	PLVILEDVRK	P <mark>TFA</mark> E <mark>I</mark>	:	60
T the subB	:	M	DLLKK		EYTGITY <mark>IS</mark> G	PLLFVENAKD	LAYGAI	:	32
	-			•				-	
		*	80	*	100	*	120		
I. mai subB									120
$\underline{\mathbf{m}}$ + ho gubB	:							:	0.2
1_clie_subb	•	VDIRDGIGKVKGGÇ	VILV <mark>O</mark> BEIAV	TÕAL T <mark>RIIG</mark> TI		EDVARDOVOR.		•	92
		+	140	+	160	+	100		
T med subD									100
L_maj_subB	:	FNGSGIPIDNGPP		I PINPRARV II	PEEMIQTGIS	SIDVMTSISR	GQKIPL	:	180
T_the_subB	:	ENGIGKLIDGTLL	TPEKRLPTTG.	LPLNPVARRKI	2E <mark>0F</mark> I0IGIS	TTDVMNTLVR	GQK <mark>L</mark> PL	:	152
		*	200	*	220	*	240		
L_maj_subB	:	FSG <mark>A</mark> GLPHNEIAAQ	21 <mark>VRQA</mark> G <mark>L</mark>	VKREG-KTEDI	F <mark>C</mark> VVFAAMG <mark>V</mark>	NQETARFFRT.	EFE <mark>QN</mark> G	:	236
T_the_subB	:	FSG <mark>S</mark> GLP <mark>ANEIAAÇ</mark>	<mark>IARQA</mark> T <mark>V</mark> RPD	<mark>LS</mark> G <mark>EG</mark> EKEEPI	F <mark>AVVFAAMG</mark> I	T <mark>QR</mark> ELS <mark>Y</mark> FIQ	EFE <mark>RT</mark> G	:	212
		*	260	*	280	*	300		
L_maj_subB	:	SMEKTVLFLNLAN	PTIERI <mark>V</mark> TPR	L <mark>ALT<mark>T</mark>AEYLA</mark> Y	<mark>ZD</mark> C <mark>G</mark> KHVLVI	LTDM <mark>SS</mark> YADA	LRE <mark>VS</mark> A	:	296
T_the_subB	:	ALSRSVLFLNKADI	PTIERI <mark>L</mark> TPR	M <mark>ALT<mark>V</mark>AEYLA<mark>I</mark></mark>	FEH <mark>D</mark> YHVLVI	LTDM <mark>TN</mark> YCEA	LRE <mark>IG</mark> A	:	272
		*	320	*	340	*	360		
L maj subB	:	AREE <mark>V</mark> PGRRG <mark>F</mark> PGY	MYT <mark>NLACIYE</mark>	RAGRVL <mark>GR</mark> AGS	S <mark>I</mark> TOIPILSM	P <mark>N</mark> DDITHPIP	DLTGYI	:	356
T the subB	:	AREE <mark>I</mark> PGRRG <mark>Y</mark> PGY	MYT <mark>DLATIYE</mark>	RAGVVEG <mark>K</mark> KGS	S <mark>V</mark> TOIPILSM	PDDDRTHPIP	DLTGYI	:	332
					~				
		*	380	*	400	*	420		
I. mai subB	•	TEGOT YVDROTHNE		ST.SRT.MKNAT		GUSNOMYAAY		•	416
T the subB		TEGOTOLSRELHRK		ST.SRLM <mark>NNGV</mark>					392
1_ene_bubb	•	110616 <mark>10</mark> 101010				2 VOD 2 L OILL		•	572
		*	110	*	160	*	180		
I mai cubB			ים ד <mark>ים דע</mark> ד ד <mark>רוםי</mark>	VEE <mark>UVETCOC</mark> I					176
L_maj_subb	•			AFE <mark>RAFICOG</mark> I				•	4/0
subB	•	KK <mark>UVALIGEDALT</mark>	ADARA LQI AD	AT B <mark>R</mark> T T INQG	5- <mark>511K91</mark> FR	T <mark>ATA</mark> WATTO		•	491
		JL	EOO						
				405					
L_maj_subB	:	NKIDMKTRDEFYDF	HPGRK	: 495					
T_the_subB	:	<mark>KRIS</mark> KDHI <mark>GKYY</mark> GÇ	<mark>ek</mark> le <mark>e</mark> iwgapQ	ALD : 478					

FIGURE S5 Recombinant *L. major* SHERP binding to *T. thermophilus* V-ATPase demonstrated by surface plasmon resonance. *T. thermophilus* V-ATPase at 0.2 mg/ml in 10 mM sodium acetate buffer, pH 5.0 was immobilized to a CM5 chip by amine coupling. Injection of *L. major* SHERP at a flow rate of 5 ul/min is shown for concentrations ranging from 0.5 μ M (red) to 15 μ M (dark blue) are shown along with the associated fits (dashed lines) to the raw data based upon a 1:1 Langmuir binding model. Binding was measured as response units over time. See main article for more details on the experimental data and analysis.

TABLE S1

Summary of mass spectrometric analyses of *Leishmania major* proteins isolated from cross-linking studies with recombinant *L. major* SHERP

Sample	Molecular	MOWSE	GeneDB	Description		
No.	Mass (kDa)	Score ^a	Identifier			
1	55	301	LmjF28.2430	vacuolar ATP synthase		
				subunit B, putative		
2	25	121	LmjF23.0040	peroxidoxin		
				tryparedoxin peroxidase		
3	27	381	LmjF36.5010	40S ribosomal protein SA,		
				putative		
4	68	111	LmjF29.1760	paraflagellar rod protein 1D,		
				putative		
5	71	574	LmjF28.2780	heat-shock protein hsp70,		
				putative		

^a Pappin, D. J., Hojrup, P., and Bleasby, A. J. (1993) Curr. Bio. 3, 327-332