Glutathione Complex Formation with Mercury(II) in Aqueous Solution at Physiological pH

Vicky Mah and Farideh Jalilehvand*

Figure S-1. PCA of k^3 -weighted EXAFS oscillations of 9 Hg^{II} -glutathione solutions (pH = 7.0) C1 - F1 ($C_{\text{Hg(II)}} \sim 17 \text{ mM}$) and **B2 - F2** ($C_{\text{Hg(II)}} \sim 50 \text{ mM}$) over $k = 3.9 - 11.9 \text{ Å}^{-1}$. (*left*) % Total residual in the reconstructed spectra obtained from consecutive elimination of the components, indicating two major components. (*right*) First three components with eigenvalues 58.6, 18.0 and 4.2, respectively. (*Note*: Solutions A1, B1 and A2, where one species is dominating, were not included in PCA).

 Table S-1. % Total residual after consecutive elimination of the components in the PCA of solutions C1

 - F1 and B2 - F2 (see Figure S-1, left).

Component	% Total Residual
8	0.016
7	0.036
6	0.063
5	0.096
4	0.182
3	0.288
2	0.746
1	9.328

Figure S-2. Linear combination fits for solutions **B1–F1** over the range k = 3.9 - 11.9 Å⁻¹, using EXAFS oscillations for models of $[Hg(AH)_2]^{2-}$ (model fit for solution **A1**: Hg-S 2.325 Å, $\sigma^2 = 0.004$ Å²) and of $[Hg(AH)_3]^{4-}$ (simulated using 3 Hg-S @ 2.42 Å, $\sigma^2 = 0.006$ Å², $\Delta E_0 = 9.0$, $S_0^2 = 1.0$).

Figure S-3. Linear combination fits for solutions **B2–F2** over k = 3.9 - 11.9 Å⁻¹, using EXAFS models for $[Hg(AH)_2]^{2-}$ (model fit for solution **A2**: Hg-S 2.324 Å, $\sigma^2 = 0.0035$ Å²) and $[Hg(AH)_3]^{4-}$ (simulated using 2 Hg-S @ 2.42 Å, $\sigma^2 = 0.006$ Å², $\Delta E_0 = 9.0$, $S_0^2 = 1.0$).

Solution B2 $[Hg(AH)_2]^{2-}$ 78 % $[Hg(AH)_3]^{4-}$ 22 %	Residual = 0.074	Solution C2 $[Hg(AH)_2]^{2-}$ $[Hg(AH)_3]^{4-}$	62% 38 %	Residual = 0.082
	B2			
Solution D2 54.07	Desidual 0.102	Solution E2	25.07	Desidual 0.090
$\frac{[Hg(AH)_2]}{[Hg(AH)_3]^{4-}} \qquad 46\%$	Residual = 0.102	$\frac{[Hg(AH)_2]}{[Hg(AH)_3]^{4-}}$	<u> </u>	Residual = 0.080
	D2 			E2 - - - - - - - - - - - - -

$\left[\mathrm{Hg}(\mathrm{AH})_{2}\right]^{2}$	30 %	Residual $= 0.080$
$\left[\mathrm{Hg}(\mathrm{AH})_{3}\right]^{4-}$	70~%	

Table S-2. Assignment of Mass Ions Observed in ESI Mass Spectra for Solution F1 (GSH/Hg(II) = 11.8, pH = 7.0) Measured in the Negative Ion Mode as Shown in Figure 3. Glutathione, GSH $(C_{10}H_{17}N_3O_6S) m = 307.3$.

-m/z,	Assignment
1229.6	$[5Na + Hg(GSH)_3 - 8H]^{-1}$
1207.6	$[4Na + Hg(GSH)_3 - 7H]^2$
878.7	$[3Na + Hg(GSH)_2 - 6H]^2$
856.7	$[2Na + Hg(GSH)_2 - 5H]^{-1}$
834.7	$[Na + Hg(GSH)_2 - 4H]^{-1}$
812.7	$[Hg(GSH)_2 - 3H]^-$

Figure S-4. Curve-fitting of the Hg L_{III}-edge EXAFS spectra for solutions **A1** (17 mM) and **A2** (50 mM) in long *k*-range (13.5 to 14.5 Å⁻¹), showing no Hg-Hg scattering

Figure S-5. *Top*) Comparison between k^3 -weighted Hg L_{III}-edge EXAFS spectra of Hg(II)-GSH solutions **A2** (red) and **F2** (blue) at pH = 7.0, containing $C_{\text{Hg(II)}} = 50$ and C_{GSH} of 0.2 and 0.5 M, respectively; *below*) corresponding Fourier-transforms.

Previously reported stability constants for Hg(II)-GSH complexes obtained from Ref. 8 and 19:

Eqn. 15 and Table VI, Ref. 8:
$$Hg^{2+} + 2A^{3-} \leftrightarrow HgA_2^{4-}$$
 $\log \beta_1 = 41.58$ Ref. 19: $Hg^{2+} + 3A^{3-} \leftrightarrow HgA_3^{7-}$ $\log \beta_2 = 44.76$ $A^{3-} + H^+ \leftrightarrow HA^{2-}$ $\log \beta_3 = 9.56$ $A^{3-} + 2H^+ \leftrightarrow H_2A$ $\log \beta_4 = 18.16$ $Hg^{2+} + 2A^{3-} + 2H^+ \leftrightarrow HgA_2H_2^{2-}$ $\log \beta_5 = 60.24$ $Hg^{2+} + 2A^{3-} + H^+ \leftrightarrow HgA_2H^{3-}$ $\log \beta_6 = 51.21$ $Hg^{2+} + 3A^{3-} + 3H^+ \leftrightarrow HgA_3H_3^{4-}$ $\log \beta_7 = 72.75$ $Hg^{2+} + 3A^{3-} + 2H^+ \leftrightarrow HgA_3H_2^{5-}$ $\log \beta_8 = 63.90$ $Hg^{2+} + 3A^{3-} + H^+ \leftrightarrow HgA_3H_6^{-}$ $\log \beta_9 = 54.57$

"Adjusted" stability constants for Hg(II)-GSH complexes used in the current study:

$$\begin{split} &\text{Hg}^{2+} + 3\text{A}^{3-} \leftrightarrow \text{Hg}\text{A}_3^{7-} & \log\beta_2 = \textbf{44.23} (= \textbf{44.76} - 0.53) \\ &\text{Hg}^{2+} + 3\text{A}^{3-} + 3\text{H}^+ \leftrightarrow \text{Hg}\text{A}_3\text{H}_3^{4-} & \log\beta_7 = \textbf{72.22} (= \textbf{72.75} - 0.53) \\ &\text{Hg}^{2+} + 3\text{A}^{3-} + 2\text{H}^+ \leftrightarrow \text{Hg}\text{A}_3\text{H}_2^{5-} & \log\beta_8 = \textbf{63.37} (= \textbf{63.90} - 0.53) \\ &\text{Hg}^{2+} + 3\text{A}^{3-} + \text{H}^+ \leftrightarrow \text{Hg}\text{A}_3\text{H}_2^{6-} & \log\beta_9 = \textbf{54.04} (= \textbf{54.57} - 0.53) \end{split}$$

The stability constant values for the HgS₃ species have been adjusted by -0.53 logarithmic units in this work to account for the relative ratio of $[Hg(AH)_2]^{2-} / [Hg(AH)_3]^{4-}$ complexes obtained from the EXAFS linear combination fittings of HgS₂ and HgS₃ models (see Figure S-6a).

In our previous work (20), we obtained distributions of deprotonated HgA_n²⁻³ⁿ species with n = 2, 3 and 4 at pH 10.5 from linear combination fitting of EXAFS models. The formation constant log $\beta_{10} \approx 44.8$ for the formation of [HgA₄]¹⁰⁻ complex (Hg²⁺ + 4A³⁻ \leftrightarrow HgA₄¹⁰⁻) provides a fraction diagram that approximately accounts for the EXAFS distribution of the HgS_n species (see Figure S-6b).

Figure S-6a. The fraction diagram *vs.* total glutathione concentration, C_{GSH} or $[A^{3-}]_{\text{TOT}}$, shows the $[\text{Hg}(\text{AH})_2]^{2-}$ and $[\text{Hg}(\text{AH})_3]^{4-}$ complexes to be the major Hg(II)-GSH species formed at pH 7.0 in solutions **A2** - **F2**, containing $[\text{Hg}^{2+}]_{\text{total}} = 50$ mM. The calculations were made with the MEDUSA program (see <u>http://www.kemi.kth.se/medusa/</u>), with the stability constant" log β_7 adjusted -0.53 logarithmic units to 72.22 for the $[\text{Hg}(\text{AH})_3]^{4-}$ complex $(\text{HgA}_3\text{H}_3^{4-}$ in the figure; see Appendix I). The adjustment shifts the C_{GSH} value for equal amounts of $[\text{Hg}(\text{AH})_2]^{2-}$ and $[\text{Hg}(\text{AH})_3]^{4-}$ from 0.17 M to 0.27 M. Dots (•) show the proportion of the HgS₃ complex obtained from EXAFS linear combination fitting (Table 4).

Figure S-6b. Fraction diagram vs. total glutathione concentration, C_{GSH} or $[A^{3-}]_{TOT}$, showing the distribution of Hg(II)-GSH species formed at pH 10.5 in solutions containing $C_{\text{Hg(II)}}$ or $[\text{Hg}^{2+}]_{\text{TOT}} = 18$ MEDUSA (20). The calculations program mМ were made with the (see http://www.kemi.kth.se/medusa/), using the adjusted stability constants for HgS₃ complexes above (see Appendix I), and $\log \beta_{10} \approx 44.8$ for the formation of the $[HgA_4]^{10-}$ complex: $(Hg^{2+} + 4A^{3-} \leftrightarrow HgA_4^{10-})$. Circles (**o**) represent the proportion of the HgS₄ species obtained from EXAFS linear combination fitting (Table 3, Ref. 20).

The full input file to the MEDUSA computer program (see <u>http://www.kemi.kth.se/medusa/</u>) after the above additions and adjustments is given below. The following log β values are used for the equilibrium formation constants:

3, 15, 1, 0 /MEDUSA, t= 25 C, p= 1 H+ Hg 2+ A 3-Hg(OH)2 , -6.097 -2 1 0 Hg(OH)3-, -21.1 -3 1 0 , -3.33 Hg2OH 3+ -1 2 0 Hg3(OH)3 3+ , -6.42 -3 3 0 HgA2 4-, 41.58 0 1 2 HgA2H 3-, 51.21 1 1 2 HgA2H2 2-, 60.24 2 1 2 HgA3 7-, 44.23 0 1 3 (adjusted) HgA3H 6-, 54.04 1 1 3 (adjusted) , 63.37 HgA3H2 5-2 1 3 (adjusted) HgA3H3 4-, 72.22 3 1 3 (adjusted) 0 1 4 (this work) HgA4 10-, 44.8 H2A-, 18.16 2 0 1 HA 2-1 0 1 , 9.56 OH-, -14.0 -1 0 0 Hg(OH)2(c) , -2.601 -2 1 0 A 3-, H+, LAV, -5.0 -12.0 T, 0.05 T, 0.5

Figure S-7a. Fraction diagram showing the distribution of Hg(II) complexes *vs.* pH for $C_{\text{Hg(II)}} = 0.017$ M, (*top*) $C_{\text{GSH}} = 0.06$ M as in solution **B1**, and (*below*) $C_{\text{Hg(II)}} = 0.017$ M and $C_{\text{GSH}} = 0.2$ M as in **F1**, calculated with the adjusted stability constants (Appendix I).

Figure S-7b. Fraction diagram showing the distribution of Hg(II) complexes *vs.* pH for $C_{\text{Hg(II)}} = 0.050$ M and $C_{\text{GSH}} = 0.15$ M as in solution **B2**, calculated according to the adjusted formation constants (Appendix I).

Figure S-7c. Diagram showing the fraction of glutathione (AH₃) species *vs.* pH in an aqueous solution containing $C_{\text{Hg(II)}} = 0.050$ M and $C_{\text{GSH}} = 0.5$ M (as in solution **F2**), calculated based on the adjusted formation constants (Appendix I).

Figure S-8. The diagrams below are calculated for $C_{Hg(II)}$ from 0 to 1 mM in glutathione GSH solution under physiological conditions (pH 7.4, $C_{GSH} = 2.2$ mM) with the adjusted stability constants in Appendix I. (top) The concentrations (logarithmic scale) shows that the dominating Hg(II) complex is $[Hg(AH)_2]^{2-}$ with about 2% present as the first deprotonated HgS₂ species, $[Hg(AH)(A)]^{3-}$ (grey line). (below) The fraction diagram shows that the proportions of the two major complexes, $[Hg(AH)_2]^{2-}$ and [Hg(AH)₃]⁴⁻ are about 95% and 3% of the total Hg(II) amount in dilute Hg(II) solutions (up to 0.1 mM); the percentage goes down at higher Hg(II)-concentration because of the lower free GSH concentration.

$$[\Lambda^{3-1} - 2.20 \text{ mM}]$$