Mechanistic Studies of 1-Aminocyclopropane-1-carboxylate Deaminase (ACCD): Characterization of an Unusual PLP-dependent Reaction

Christopher J. Thibodeaux and Hung-wen Liu*

Department of Pharmacy, Department of Chemistry and Biochemistry, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712

Supporting Information

Methods

Description of reaction mixtures for ¹³C-KIE studies and purification of residual ACC: Large scale reactions (performed in duplicate) were conducted by dissolving ~ 950 mg of ACC to a final concentration of 50 mM in 100 mM potassium phosphate (pH 7.5). To initiate the reaction, wt ACCD enzyme was added and the reaction mixture was slowly stirred at 25 °C. The progress of the reaction was periodically assessed using the coupled LDH assay to determine the concentration of reaction product, α -KB. The enzyme activity decreased over ~ 24 h, so aliquots of fresh enzyme were periodically added as turnover became sluggish. As the reaction neared completion, a 0.5 mL aliquot was removed for determining the fraction of reaction and the remainder of the reaction mixture was cooled to 4 °C and filtered using a YM-10 membrane (Millipore, Billerica, MA.) to remove the enzyme. The filtered sample was loaded onto Dowex-50 cation exchange resin (100 mL) to recover the residual ACC starting material. The resin had been previously equilibrated with 250 mL of 2 M HCl and washed with H₂O (~ 300 mL) until the pH of the column eluate was neutral. After loading the reaction onto the

column, the resin was washed with an additional 500 mL of H₂O to elute the reaction product (α -KB) and phosphate buffer. ACC was then eluted with 300 mL of 6% NH₄OH in H₂O (pH 11.5) and the solvent was removed by rotary evaporation and lyophilization. The column eluate was repeatedly dissolved in ~250 mL H₂O and lyophilized to remove the majority of the NH₃. For each large scale reaction, a separate commercial batch of ACC was used. A 50 mg sample of ACC was saved from each commercial batch for determination of the ¹³C content of unreacted starting material. The sample was dissolved in 200 mL (the approximate volume of the large-scale reactions) of 100 mM potassium phosphate (pH 7.5) and was purified by cation exchange chromatography in a manner identical to that described for the recovery of residual ACC from the large scale reactions.

Measuring ¹³C-enrichment (R/R_0) in ACC using ¹³C-NMR spectroscopy: Following purification, the unreacted and residual ACC samples were dissolved separately in 660 µL of an H₂O:D₂O mixture (90:10% v/v) and analyzed by ¹³C-NMR spectroscopy to determine the relative ¹³C enrichment at each carbon atom of ACC. NMR spectra were collected on a Varian Unity 500 MHz NMR spectrometer at the NMR core facility at the University of Texas, Austin. A total of ten ¹³C-NMR spectra were recorded for each sample. Each spectrum was composed of 256 scans, separated by a delay time of 80 sec between scans to ensure full relaxation of each of the ¹³C nuclei of ACC between individual instrument pulses. For integration of ¹³C-NMR peaks, a zeroth order baseline correction was made in the vicinity of each signal, and the peak areas were determined by integrating a 10 Hz window centered around the chemical shift of each peak. The same integration parameters were then applied to each of the nine other spectra in that particular set. The relative ¹³C enrichment of the carboxylate carbon of ACC was used as an internal standard to normalize the relative ¹³C enrichment of C_{α} and C_{β} within each sample. This relative measurement of the ¹³C content of C_{α} and C_{β} is hereafter referred to as *R* for residual ACC samples recovered from large scale wt ACCD reactions, or as R_0 for unreacted ACC samples. From the averaged values of *R* and R_0 determined from the ten NMR spectra, the ratio *R*/*R*₀ and its associated standard error $\Delta(R/R_0)$ was calculated for the C_{α} and C_{β} atoms. It should be emphasized that for each large-scale reaction, the *R* and R_0 measurements are derived from the same commercial batch of substrate.

Determining the fraction of reaction (*F***): To determine the fraction of reaction (***F***), the concentration of α-KB present in the quenched reaction mixture at the end of the large scale reaction (C₁) was compared to the concentration of α-KB (C₂) present in a sample of the same reaction mixture that had been allowed to reach 100% conversion by the addition of excess ACCD. C₁ and C₂ were measured via an end-point assay that coupled α-KB reduction to NADH oxidation using lactate dehydrogenase (LDH). A 1 mL solution containing 150 μM NADH, 4 units of LDH, and 100 mM sodium phosphate buffer (pH 7.0) was transferred to a cuvette and the absorbance at 340 nm was recorded over several minutes. A 1 μL aliquot of the large scale reaction mixture (or of the reaction driven to 100% completion) was then added and the change in absorbance at 340 nm (ε₃₄₀ of NADH = 6220 M⁻¹cm⁻¹) was used to calculate the concentration of α-KB. A total of 10 replicate measurements of both C1 and C2 was made for each large scale reaction.**

The fraction of reaction was then calculated as $F = C_1/C_2$, and the standard errors of the C_1 and C_2 measurements were propagated to calculate ΔF .

Calculation of ¹³(k_{cat}/K_m) and its associated standard error: From the R/R_0 and F values determined above, the ¹³(k_{cat}/K_m) at both C_{α} and C_{β} of ACC (KIE_{calc}) were calculated with eq S.1. The standard errors on KIE_{calc} that result from uncertainties in the fraction of reaction (Δ KIE_F) and ¹³C enrichment (Δ KIE_R) measurements were then calculated with eq S.2 and S.3, respectively, using the experimentally determined standard errors on R/R_0 and F ($\Delta R/R_0$ and ΔF , respectively).¹ The standard error on KIE_{calc} was then calculated with Eq S.4 and is reported in the main text.

Eq S.1:

$$\text{KIE}_{\text{calc}} = \ln(1-F)/\ln[(1-F)R/R_{\text{o}}]$$

Eq S.2:

$$\Delta \text{KIE}_{\text{F}} = -\ln(R/R_{\text{o}}) \,\Delta F/[(1-F)\ln^{2}[(1-F)R/R_{\text{o}}]]$$

Eq S.3:

 $\Delta \text{KIE}_{\text{R}} = -\ln(1-F) \Delta (R/R_{\text{o}})/[(R/R_{\text{o}})\ln^{2}[(1-F)R/R_{\text{o}}]]$

Eq S.4:

$$\Delta \text{KIE}_{\text{calc}} = \text{KIE}_{\text{calc}} [(\Delta \text{KIE}_{\text{F}}/\text{KIE}_{\text{calc}})^2 + (\Delta \text{KIE}_{\text{R}}/\text{KIE}_{\text{calc}})^2]^{1/2}$$

Results

wt ACCD (D₂O)

wt ACCD (H₂O)

рН	$k_{\rm cat}~({\rm s}^{-1})$	$K_{\rm m}$ (mM)	pD	k_{cat} (s ⁻¹)	$K_{\rm m}$ (mM)
6.55	1.62(6)	21(2)	7.13	0.32(1)	23(2)
6.65	1.82(3)	18(2)	7.45	0.26(1)	5.4(6)
6.83	1.61(3)	6.7(4)	7.94	0.25(1)	1.7(2)
7.14	1.69(2)	3.0(1)	8.23	0.21(1)	0.7(1)
7.41	1.48(2)	2.2(1)	8.48	0.226(4)	0.46(4)
7.69	1.32(2)	1.2(1)	8.81	0.21(1)	0.46(1)
7.95	1.35(2)	0.96(7)	9.09	0.212(5)	0.37(5)
8.00	1.38(2)	1.2(1)	9.41	0.203(4)	0.73(8)
8.21	1.29(3)	0.85(9)	9.73	0.17(1)	1.4(4)
8.49	1.11(5)	1.2(2)			
8.82	1.02(3)	2.3(4)			
9.12	0.94(4)	6.2(9)			
9.41	0.97(6)	10(2)			
9.71	0.83(3)	13(1)			

E295D

Y268F

pН	$k_{\rm cat}~({\rm s}^{-1})$	$K_{\rm m}$ (mM)	pН	k_{cat} (s ⁻¹)	$K_{\rm m}$ (mM)
6.72	0.103(6)	27(4)	7.00	0.0078(3)	7.0(5)
7.02	0.134(3)	13(1)	7.22	0.0059(1)	5.1(5)
7.27	0.138(3)	7.1(5)	7.33	0.0040(1)	5.1(3)
7.50	0.139(3)	5.0(4)	7.5	0.0040(1)	4.2(4)
7.62	0.147(2)	3.6(2)	7.77	0.0120(2)	4.1(3)
7.88	0.147(3)	2.4(2)	8.12	0.0186(3)	4.0(2)
8.21	0.126(2)	1.7(1)	8.44	0.0261(4)	3.4(2)
8.50	0.124(3)	2.4(2)	9.00	0.0261(6)	3.2(.3)
8.77	0.130(4)	4.0(4)	9.30	0.026(1)	4.9(6)
9.12	0.136(6)	12(1)	9.57	0.029(1)	10(1)
9.50	0.140(4)	36(2)			

Table S1.Summary of fits of steady state kinetic data to the Michaelis-MentenEquation.Standard errors are shown in parentheses.

Figure S1: pH-Dependence of internal aldimine absorption for the E295D, Y268F, and Y294F mutant enzymes.

Figure S2: Viscosity effects on k_{cat} for wt ACCD. The data were fit with eq 4 as described in the Materials and Methods.

Model	$SSR_{(LOF)}$	$d_{f(LOF)}$	F	F_{c}
T ₁	0.00124	4	1.20	2.93
T_2	0.000327	3	0.42	3.16
T ₁ S	0.000204	3	0.26	3.16
	$SSR_{(PE)}$	$d_{f(PE)}$		
Pure Error	0.00463	18		

Table S2. Lack-of-fit *F*-tests for fits of the proton inventory data to various forms of the Gross-Butler equation (see eq 5 in Materials and Methods). The definition of each model $(T_1, T_2, \text{ and } T_1S)$ is shown in Table 2 of the main text. Lack-of-fit *F*-values were calculated as: $F = (SSR_{(LOF)}/d_{f(LOF)})/(SSR_{(PE)}/d_{f(PE)})$ as described by Draper and Smith,² where *SSR* are sum square residuals and d_f are the degrees of freedom for the lack-of-fit (LOF) and pure error (PE) estimates. F_c is the critical *F*-value at the 5% significance level.

Figure S3. A typical ¹³C-NMR spectrum of ACC taken under the conditions employed in this study.

Reaction 1										
		1	Unreac	ted				Resid	ual	
	a a a	~	ACC				a	ACO	2	
Ν	COO-	C_{α}	C _β	$R_{o(C\alpha)} =$	$R_{o(C\beta)} =$	COO-	C _α	C _β	$R_{(C\alpha)} =$	$R_{(C\beta)} =$
	75	746	1.20	$C_{\alpha}/COO-$	$C_{\beta}/COO-$	0.0.4	000	1.4	$\frac{C_{\alpha}}{1.01}$	$C_{\beta}/COO-$
1	./5	./46	1.32	.994	1.76	.804	.809	1.4	1.01	1.74
2	.775	.755	1.34	.974	1.73	.808	.824	1.42	1.02	1.76
3	.//	./56	1.31	.982	1.70	.81	.832	1.43	1.03	1.//
4	.772	.749	1.31	.970	1.70	.814	.829	1.43	1.02	1.76
5	.735	.748	1.3	1.02	1.77	.839	.846	1.45	1.01	1.73
6	.755	.733	1.32	.971	1.75	.82	.837	1.45	1.02	1.77
7	.75	.741	1.3	.988	1.73	.823	.829	1.46	1.01	1.77
8	.743	.742	1.33	.999	1.79	.851	.839	1.44	0.986	1.69
9	.749	.737	1.3	.984	1.74	.814	.846	1.45	1.04	1.78
10	.757	.741	1.33	.979	1.76	.825	.848	1.44	1.03	1.75
	A	verage	Ro	0.986(4)	1.74(1)	А	verage	R	1.016(5)	1.75(1)
	Deastion 2									
					Reaction	n 2				
		1	Inreac	ted	Reaction	n 2		Residu	nal	
		1	Unreac ACC	eted	Reaction	n 2		Residu ACO	ual C	
N	СОО-	Cα	Unreac ACC C _β	$R_{o(C\alpha)} =$	Reaction $R_{o(CB)} =$	n 2	Cα	$\begin{array}{c} \textbf{Residu}\\ \textbf{ACC}\\ \textbf{C}_{\beta} \end{array}$	$\begin{array}{l} \text{ual} \\ C \\ R_{(Ca)} \end{array} = \end{array}$	R _(CB) =
Ν	СОО-	C _α	Unreac ACC C _β	$R_{o(C\alpha)} = C_{\alpha}/COO-$	Reaction $R_{o(C\beta)} = C_{\beta}/COO-$	n 2 COO-	C _a	Reside ACC C _β	$\mathbf{R}_{(C\alpha)} = \frac{C_{\alpha}}{C_{\alpha}/COO}$	$R_{(C\beta)} = C_{\beta}/COO-$
N 1	COO- .979	C _α	Unreac ACC C _β 1.62	$\frac{R_{o(Ca)}}{C_{a}/COO-} = \frac{C_{a}/COO-}{.957}$	Reaction $R_{o(C\beta)} = C_{\beta}/COO-1.655$	n 2 COO-	C _α	$\begin{array}{c} \textbf{Reside} \\ \textbf{ACC} \\ C_{\beta} \\ \hline 2.03 \end{array}$	ual $C_{R_{(Ca)}} = \frac{C_{a}/COO-}{.975}$	$R_{(C\beta)} = \frac{C_{\beta}/COO}{1.692}$
N 1 2	COO- .979 .977	C _α .937 .908	Unreac ACC C_{β} 1.62 1.61	$R_{o(Ca)} = \frac{C_{a}/COO}{.957}$	Reaction $R_{o(C\beta)} = C_{\beta}/COO-$ 1.655 1.648	n 2 COO- 1.2 1.21	C _α 1.17 1.15	$\begin{array}{c} \textbf{Residu}\\ \textbf{ACC}\\ C_{\beta}\\ \hline 2.03\\ 2.07 \end{array}$	$R_{(C\alpha)} = \frac{R_{(C\alpha)}}{C_{\alpha}/COO-}$ $\frac{.975}{.950}$	$R_{(C\beta)} = \frac{C_{\beta}/COO}{1.692}$ 1.717
N 1 2 3	.979 .977 .976	C _α .937 .908 .926	Unread ACC C_{β} 1.62 1.61 1.62	$R_{o(Ca)} = \frac{R_{o(Ca)}}{C_{a}/COO-}$.957 .929 .949	Reaction $R_{o(C\beta)} = \frac{C_{\beta}/COO}{1.655}$ 1.648 1.66	n 2 COO- 1.2 1.21 1.21	C _α 1.17 1.15 1.19	Reside ACC C _β 2.03 2.07 2.06	$R_{(C\alpha)} = \frac{R_{(C\alpha)}}{C_{\alpha}/COO} = \frac{0.000}{.975} = \frac{0.000}{.983}$	$R_{(C\beta)} = \frac{C_{\beta}/COO}{1.692}$ 1.717 1.702
N 1 2 3 4	.979 .977 .976 .946	C _α .937 .908 .926 .942	Unreac ACC C_{β} 1.62 1.61 1.62 1.62	$\frac{R_{o(Ca)}}{C_{\alpha}/COO-} = \frac{R_{o(Ca)}}{.957} = \frac{.929}{.949} = .996$	Reaction $R_{o(C\beta)} = C_{\beta}/COO-$ 1.655 1.648 1.66 1.712	n 2 COO- 1.2 1.21 1.21 1.21 1.2	C_{α} 1.17 1.15 1.19 1.19	Reside ACC C _β 2.03 2.07 2.06 2.07	$R_{(C\alpha)} = \frac{R_{(C\alpha)}}{C_{\alpha}/COO} = \frac{0.000}{.975} = \frac{0.000}{.983} = \frac{0.000}{.992}$	$R_{(C\beta)} = \frac{C_{\beta}/COO}{1.692}$ 1.717 1.702 1.725
N 1 2 3 4 5	.979 .977 .976 .946 .97	C _α .937 .908 .926 .942 .906	Unreac ACC C_{β} 1.62 1.61 1.62 1.62 1.62 1.61	$\frac{R_{o(Ca)}}{C_{a}/COO-} = \frac{R_{o(Ca)}}{.957} = \frac{.929}{.949} = .996 = .934$	Reaction $R_{o(C\beta)} = C_{\beta}/COO-$ 1.655 1.648 1.66 1.712 1.66	n 2 COO- 1.2 1.21 1.21 1.21 1.2 1.21	C_{α} 1.17 1.15 1.19 1.19 1.21	Reside ACC C _β 2.03 2.07 2.06 2.07 2.1	$ \begin{array}{c} \text{mal} \\ R_{(C\alpha)} = \\ C_{\alpha}/\text{COO-} \\ .975 \\ .950 \\ .983 \\ .992 \\ 1.00 \\ \end{array} $	$R_{(C\beta)} = C_{\beta}/COO-$ 1.692 1.717 1.702 1.725 1.736
N 1 2 3 4 5 6	.979 .977 .976 .946 .97 1.01	C _α .937 .908 .926 .942 .906 .941	Unreac ACC C_{β} 1.62 1.61 1.62 1.62 1.61 1.63	$R_{o(Ca)} = \frac{R_{o(Ca)}}{C_a/COO-}$.957 .929 .949 .996 .934 .932	Reaction $R_{o(C\beta)} = C_{\beta}/COO-$ 1.655 1.648 1.66 1.712 1.66 1.614	n 2 COO- 1.2 1.21 1.21 1.21 1.2 1.21 1.2	C_{α} 1.17 1.15 1.19 1.19 1.21 1.18	$\begin{array}{c} \textbf{Reside} \\ \textbf{ACC} \\ C_{\beta} \end{array}$	$\begin{array}{c} \mathbf{R}_{(C\alpha)} = \\ \mathbf{C}_{\alpha}/\text{COO-} \\ .975 \\ .950 \\ .983 \\ .992 \\ 1.00 \\ .983 \end{array}$	$R_{(C\beta)} = C_{\beta}/COO-$ 1.692 1.717 1.702 1.725 1.736 1.725
N 1 2 3 4 5 6 7	.979 .977 .976 .946 .97 1.01 .99	C _α .937 .908 .926 .942 .906 .941 .954	Unreac ACC C_{β} 1.62 1.61 1.62 1.62 1.62 1.61 1.63 1.63 1.65	$R_{o(Ca)} = C_a/COO-$ $.957$ $.929$ $.949$ $.996$ $.934$ $.932$ $.964$	Reaction $R_{o(C\beta)} = C_{\beta}/COO-$ 1.655 1.648 1.66 1.712 1.66 1.614 1.667	n 2 COO- 1.2 1.21 1.21 1.2 1.21 1.2 1.23	C_{α} 1.17 1.15 1.19 1.19 1.21 1.18 1.16	$\begin{array}{c} \textbf{Residu} \\ \textbf{ACC} \\ C_{\beta} \\ \hline \\ 2.03 \\ 2.07 \\ 2.06 \\ 2.07 \\ 2.1 \\ 2.07 \\ 2.1 \\ \end{array}$	$R_{(C\alpha)} = \frac{R_{(C\alpha)}}{C_{\alpha}/COO-}$ $.975$ $.950$ $.983$ $.992$ 1.00 $.983$ $.943$	$\begin{array}{l} R_{(C\beta)} = \\ C_{\beta}/COO- \\ \hline 1.692 \\ 1.717 \\ 1.702 \\ 1.725 \\ 1.736 \\ 1.725 \\ 1.707 \end{array}$
N 1 2 3 4 5 6 7 8	.979 .977 .976 .946 .97 1.01 .99 .996	C _a .937 .908 .926 .942 .906 .941 .954 .922	$\begin{array}{c} \text{Unread} \\ \textbf{ACC} \\ \textbf{C}_{\beta} \\ \hline 1.62 \\ 1.61 \\ 1.62 \\ 1.61 \\ 1.63 \\ 1.65 \\ 1.61 \end{array}$	$\frac{R_{o(Ca)}}{C_{\alpha}/COO-} = \frac{1}{C_{\alpha}/COO-}$ $\frac{.957}{.929}$ $.949$ $.996$ $.934$ $.932$ $.964$ $.926$	Reaction $R_{o(C\beta)} = \frac{C_{\beta}/COO}{1.655}$ 1.648 1.666 1.712 1.666 1.614 1.667 1.616	n 2 COO- 1.2 1.21 1.21 1.2 1.21 1.2 1.23 1.24	C_{α} 1.17 1.15 1.19 1.19 1.21 1.18 1.16 1.19	$\begin{array}{c} \textbf{Residu} \\ \textbf{ACC} \\ \textbf{C}_{\beta} \end{array} \\ \hline 2.03 \\ 2.07 \\ 2.06 \\ 2.07 \\ 2.1 \\ 2.07 \\ 2.1 \\ 2.07 \\ 2.1 \\ 2.07 \end{array}$	$\begin{array}{l} \textbf{ual} \\ \textbf{R}_{(C\alpha)} = \\ \underline{C_{\alpha}/\text{COO-}} \\ .975 \\ .950 \\ .983 \\ .992 \\ 1.00 \\ .983 \\ .943 \\ .960 \end{array}$	$R_{(C\beta)} = \frac{C_{\beta}/COO}{1.692}$ 1.717 1.702 1.725 1.736 1.725 1.707 1.669
N 1 2 3 4 5 6 7 8 9	COO- .979 .977 .976 .946 .97 1.01 .99 .996 .984	C _α .937 .908 .926 .942 .906 .941 .954 .922 .926	$\begin{array}{c} \text{Unread} \\ \textbf{ACC} \\ \textbf{C}_{\beta} \\ \hline 1.62 \\ 1.61 \\ 1.62 \\ 1.61 \\ 1.63 \\ 1.65 \\ 1.61 \\ 1.62 \end{array}$	$R_{o(Ca)} = \frac{R_{o(Ca)}}{COO-}$ $.957$ $.929$ $.949$ $.996$ $.934$ $.932$ $.964$ $.926$ $.941$	$\begin{array}{l} \textbf{R}_{o(C\beta)} = \\ C_{\beta}/\text{COO-} \\ \hline 1.655 \\ 1.648 \\ 1.66 \\ 1.712 \\ 1.66 \\ 1.614 \\ 1.667 \\ 1.616 \\ 1.646 \end{array}$	n 2 COO- 1.2 1.21 1.21 1.2 1.21 1.2 1.23 1.24 1.2	C_{α} 1.17 1.15 1.19 1.19 1.21 1.18 1.16 1.19 1.18	$\begin{array}{c} \textbf{Residu} \\ \textbf{ACC} \\ \textbf{C}_{\beta} \end{array} \\ \hline 2.03 \\ 2.07 \\ 2.06 \\ 2.07 \\ 2.1 \\ 2.07 \\ 2.1 \\ 2.07 \\ 2.0 \\ 2.06 \end{array}$	$\begin{array}{c} \mathbf{R}_{(C\alpha)} = \\ \hline \mathbf{R}_{(C\alpha)} = \\ \hline \mathbf{C}_{\alpha}/\text{COO-} \\ \hline .975 \\ .950 \\ .983 \\ .992 \\ 1.00 \\ .983 \\ .943 \\ .960 \\ .983 \end{array}$	$R_{(C\beta)} = \frac{C_{\beta}/COO}{1.692}$ 1.717 1.702 1.725 1.736 1.725 1.707 1.669 1.717
N 1 2 3 4 5 6 7 8 9 10	COO- .979 .977 .976 .946 .97 1.01 .99 .996 .984 .999	C _α .937 .908 .926 .942 .906 .941 .954 .922 .926 .948	$\begin{array}{c} \text{Unread} \\ \textbf{ACC} \\ \textbf{C}_{\beta} \\ \hline 1.62 \\ 1.61 \\ 1.62 \\ 1.61 \\ 1.63 \\ 1.65 \\ 1.61 \\ 1.62 \\ 1.64 \\ \end{array}$	$R_{o(Ca)} = \frac{R_{o(Ca)}}{COO-}$ $\frac{.957}{.929}$ $.949$ $.996$ $.934$ $.932$ $.964$ $.926$ $.941$ $.949$	$\begin{array}{l} \textbf{R}_{o(C\beta)} = \\ C_{\beta}/COO- \\ \hline 1.655 \\ 1.648 \\ 1.66 \\ 1.712 \\ 1.66 \\ 1.614 \\ 1.667 \\ 1.616 \\ 1.616 \\ 1.646 \\ 1.642 \end{array}$	n 2 COO- 1.2 1.21 1.21 1.21 1.2 1.21 1.2 1.2	C_{α} 1.17 1.15 1.19 1.19 1.21 1.18 1.16 1.19 1.18 1.21	$\begin{array}{c} \textbf{Residu} \\ \textbf{ACC} \\ \textbf{C}_{\beta} \end{array} \\ \hline 2.03 \\ 2.07 \\ 2.06 \\ 2.07 \\ 2.1 \\ 2.07 \\ 2.1 \\ 2.07 \\ 2.06 \\ 2.09 \end{array}$	$\begin{array}{c} \mathbf{R}_{(C\alpha)} = \\ C_{\alpha}/COO- \\ .975 \\ .950 \\ .983 \\ .992 \\ 1.00 \\ .983 \\ .943 \\ .960 \\ .983 \\ .992 \end{array}$	$\begin{array}{l} R_{(C\beta)} = \\ C_{\beta}/COO- \\ \hline 1.692 \\ 1.717 \\ 1.702 \\ 1.725 \\ 1.736 \\ 1.725 \\ 1.707 \\ 1.669 \\ 1.717 \\ 1.713 \end{array}$

Table S3. Summary of raw ¹³C-NMR integrations and calculation of average *R* and R_0 values for the C_{α} and C_{β} atoms in the two replicate reactions. *N* is the spectrum number. The values in parentheses on the average *R* and R_0 parameters are the standard errors in the final digit.

	Read	ction 1	Reaction 2		
Replicate	C ₁	C_2	C ₁	C_2	
1	45.19	50.92	42.54	50.48	
2	45.14	51.71	42.32	51.39	
3	44.99	50.83	42.46	51.74	
4	47.14	50.37	42.89	52.39	
5	45.60	51.19	43.34	52.43	
6	46.01	50.97	44.06	50.68	
7	45.95	50.07	43.40	52.66	
8	46.99	50.59	44.53	52.79	
9	47.61	51.28	43.48	51.41	
10	46.52	50.80	42.34	51.33	
Average	46.1 ± 0.29	50.9 ± 0.14	43.1 ± 0.24	51.7 ± 0.26	
$F = C_1/C_2$	0.906	± 0.006	0.834 ±	: 0.006	

Table S4. Fraction of reaction measurement. The coupled LDH enzyme assay was used to quantify the concentration of α -KB at the end of the each large-scale reaction (C₁) as well as the concentration of α -KB when the reaction was taken to 100% completion by the addition of excess ACCD (C₂). The fraction of reaction, *F*, and its standard error (ΔF) were then calculated from the averaged values of C₁ and C₂.

Figure S4. Fits of pre-steady state absorbance changes of wt ACCD and its mutants to exponential equations. The wt ACCD data (followed at 419 nm) were fit with a double exponential equation. The E295D data (followed at 430 nm) were fit with a single exponential equation, and the Y268F and Y294F data (followed at 430 nm) were fit with a triple exponential equation. Fitted parameter values are summarized in Table S4.

Figure S4 (continued).

Enzyme	A_1	k_1	A_2	k_2	A_3	k_3	С
wt ACCD	-0.044(1)	260(5)	0.033(1)	2.31(3)	-	-	0.254(1)
E295D	-0.015(2)	150(30)	-	-	-	-	0.108(2)
Y268F	0.082(2)	71(2)	-0.053(2)	14.8(4)	0.0310(2)	0.46(1)	0.229(1)
Y249F	0.028(1)	6.1(5)	0.026(3)	0.48(7)	-0.033(2)	0.10(2)	0.034(1)

Table S5. Summary of fitted parameter values obtained from non-linear fits of the stopped-flow data in Figure S4 to exponential equations. Standard errors in the final digit of the parameter estimates are shown in parentheses.

- 1. Singleton, D. A.; Thomas, A. A., High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. *J. Am. Chem. Soc.* **1995**, 117, 9357-9358.
- 2. Draper, N. R.; Smith, H., *Applied Refression Analysis*. 3rd ed.; John Wiley & sons: New York, 1998; p 706.