
Supporting Material for
“Measuring single molecule DNA hybridization by

active control of DNA in a nanopore”

1 Target DNA and binding oligodeoxynucleotide (ODN) purity

In our experimental studies of DNA hybridization as a function of fishing (exposure) time and
the subsequent dissociation of bound oligomers, we compared the behaviors of two syntheses
of the 59 mer target (labeled 59A and 59B) and 10 mer ODN (labeled 10A and 10B) in
different experiments. The two syntheses yield significantly different results. For instance,
the fraction of detectable hybridization at a long fishing time is near 100% for 59A whereas
the fraction of detectable hybridization at a long fishing time is only about 80% for 59B (see
Figure 2 in the text). Since the experimental conditions were set to be the same for the two
syntheses, the cause of the different behaviors is likely to be the impurity in the syntheses.

Gels were run to establish the purity of the target DNA and ODN samples. 59A and 59B
were run on 14% denaturing PAGE gels at 20 W for 5 hours. 10A and 10B were run on a 20%
denaturing PAGE gel at 28 W for 1.5 hours. Gels were stained with SYBR gold (Invitrogen)
according to manufacturer’s protocol, and imaged on a UVP gel documentation system.
The relative intensities of the imaged bands in each lane were analyzed used ImageJ[1]. For
59A, the full length product comprises 81% of the relative intensity of the lane, whereas for
59B the full length product comprises only 29% of the relative intensity seen in the sample
(Fig. S1, I and II). Both 10A and 10B showed comparable and high purity (Fig. S1 III). The
results of gel experiments indicate i) target DNA 59B is significantly less pure than 59A,
which is consistent with the results of hybridization experiments (see Fig. 2 in the main
text); and ii) ODN 10A and 10B both have high purity.

2 Fitting the hybridization model to data: Estimation of {q, r}
and their uncertainty

Here we discuss a mathematical formulation and the associated numerical algorithm for
fitting the hybridization model to the data presented. In the hybridization model, the
fraction of observable hybridization as a function of fishing time has the form

p(t) = q[1− exp(−rt)]

where q is the fraction of observable hybridization at long fishing time and r is the rate
of hybridization. In the hybridization model, q and r are two unknown parameters to be
determined from the data. Specifically, the goal of the fitting is 1) to determine the values
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Figure S1: Gel sample and relative lane intensity values for two syntheses of 59
mer target DNA (59A and 59B) on a common gel (I)-(II), and sample image of
two syntheses of 10 mer binding ODN (10A and 10B) on a common gel. (II) Lane
intensity plots with percentage values for each peak computed using the ImageJ[1] software.
Lanes L1 and L2 shown in main text Fig. 2 B. (III) ImageJ lane intensity plots showed ≥99%
intensity with single peaks for both 10A and 10B.

of these two unknown parameters from data and 2) to determine the uncertainties in the
estimated values of these two parameters.

2.1 Experimental Data

The experimental data consists of N entries. Each data entry is a vector of three components
corresponding to the measurements at a given fishing time

Dexp = {(tj, nj, pj), j = 1, 2, . . . , N}

where tj is the fishing time, nj is the number of fishing events at fishing time tj, and pj is
the fraction of bound events at fishing time tj.

2.2 Estimating the Values of q and r

We consider a measure of distance between the data and the fitting function

f(q, r) =
N∑

j=1

nj (q(1− exp(−rtj))− pj)
2

Mathematically, the fitting problem is a minimization problem of the form

arg min
(q,r)

f(q, r)

This is a two-dimensional non-linear minimization problem. We notice that q appears linearly
in the fitting function. Therefore, the one-dimensional minimization with respect to q while
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r is fixed can be solved analytically. Let q(r) denote the location of minimum of f(q, r) with
respect to q. Mathematically, q(r) is

q(r) ≡ arg min
q

f(q, r)

q(r) satisfies

∂

∂q
f(q, r)

∣∣∣∣∣
q=q(r)

= 0

⇒ 2
N∑

j=1

nj (q (1− exp(−rtj))− pj) (1− exp(−rtj))

∣∣∣∣∣
q=q(r)

= 0

⇒ q(r)
N∑

j=1

nj(1− exp(−rtj))2 =
N∑

j=1

njpj(1− exp(−rtj))

⇒ q(r) =

N∑
j=1

njpj(1− exp(−rtj))

N∑
j=1

nj(1− exp(−rtj))2

In function f(q, r), we set q = q(r) to write it as a function of r only.

g(r) ≡ f(q(r), r)

Thus, the two-dimensional minimization problem is reduced to the one-dimensional mini-
mization problem

arg min
r

g(r)

which, in turn, becomes the problem of solving the non-linear equation

g′(r) = 0

Let us derive an analytic expression for the derivative g′(r).

g′(r) =
d

dr
f(q(r), r) =

∂

∂q
f(q, r)

∣∣∣∣∣
q=q(r)

· q′(r) +
∂

∂r
f(q, r)

∣∣∣∣∣
q=q(r)
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Using
∂

∂q
f(q, r)

∣∣∣∣∣
q=q(r)

= 0 , we get

g′(r) =
∂

∂r
f(q, r)

∣∣∣∣∣
q=q(r)

= q(r)
1

N

N∑
j=1

njtj exp(−rtj)(q(r)(1− exp(−rtj))− pj)

≡ q(r)F (r)

where function F(r) has the expression

F (r) =
N∑

j=1

njtj exp(−rtj)(q(r)(1− exp(−rtj))− pj)

Notice that when q = 0, the fitting function is identically zero: q(1 − exp(rtj)) = 0, which
is not a meaningful case. For that reason, we exclude the case of q(r) = 0. Consequently,
solving g′(r) = 0 is equivalent to solving

F (r) = 0

We use Newton’s method with numerical differentiation to solve this non-linear equation.

2.3 Estimating the Uncertainty in the Determined Values of q and r

Let q(D) and r(D) denote the mapping from the data set D to the determined values of
parameters q and r using the least square fitting described above.

To distinguish the experimental data set from the numerical data sets that we will con-
sider below, we use Dexp to denote the experimental data set and use D(i) to denote the i-th
numerical data set. Let

qexp = q(Dexp), rexp = r(Dexp)

To estimate the uncertainty in qexp and rexp, we generate M independent numerical data
sets:

D(i) =
{

(tj, nj, p
(i)
j ), j = 1, 2, . . . , N

}
, i = 1, 2, . . . ,M

In each numerical data set, tj and nj are the same as in the experimental data set, and p
(i)
j

is calculated as

p
(i)
j =

m
(i)
j

nj
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where m
(i)
j is a random sample drawn from the binomial distribution with number = nj and

probability = pj. In MATLAB, we can generate m
(i)
j using

m
(i)
j = sum(rand(1, nj)) < pj)

We map each numerical data set to the determined values of q and r using the least square
fitting described above

q(i) = q(D(i)), r(i) = r(D(i))

We then calculate the standard deviations of {q(i), i = 1, 2, . . . ,M} and {r(i), i = 1, 2, . . . ,M}.

〈q〉 ≈ 1

M

M∑
i=1

q(i), std(q) ≈

√√√√ 1

M − 1

M∑
i=1

(q(i) − 〈q〉)2

〈r〉 ≈ 1

M

M∑
i=1

r(i), std(r) ≈

√√√√ 1

M − 1

M∑
i=1

(r(i) − 〈r〉)2

The 95% confidence intervals for qexp and rexp can be approximated as

[qexp − 2std(q), qexp + 2std(q)]

[rexp − 2std(r), rexp + 2std(r)]

In the paper, we report std(q) and std(r) as the standard errors for qexp and rexp.

3 Modeling duplex lifetime samples between 0.7 ms and 300 ms

Let τ denote the (random) lifetime of a DNA duplex when it is pulled against the pore by a
voltage reversal to -20 mV. We need to point out a few aspects of experimentally measured
samples of τ before we write out the mathematical model.

• There is a lower cut-off threshold for τ at x1 = 0.7 ms. Hybridization events with dwell
time τ < x1 are not detected. In experiments, the capacitive transient after a sudden
voltage change obscures the electric current measurement, and thus, prevents us from
detecting a hybridization event with very short dwell time.

• There is an upper cut-off threshold for τ at x2 = 300 ms. Events with dwell time
τ > x2 are recognized as hybridization events. In that case, DNAs are ejected at 300
ms by changing the voltage to -120 mV. As a result, the values of the dwell time larger
than 300 ms are not measured.

• At low probing voltage, the measured samples of τ between x1 = 0.7 ms and x2 = 300
ms do not follow a single exponential distribution.
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We model the dwell time between x1 = 0.7 ms and x2 = 300 as the sum of two exponential
modes. Mathematically, we use the probability density

p(τ, v) = αλ1 exp(−λ1(τ − x1)) + (1− α)λ2 exp(−λ2(τ − x1))

There are three parameters in the model, and we put them into one parameter vector:
v = (λ1, λ2, α). Here λ1 is the rate of slow dissociation, λ2 the rate of fast dissociation,
relatively within the range of 0.7 to 300 ms, and α is the fraction of slow dissociation. Note
that there is at least one more dissociation mode with even slower rate in the range of τ > 300
ms. For less pure DNA targets (59B), there is also at least one dissociation mode with very
fast rate in the range of τ < 0.7 ms, which is not observable in our experiments.

To deal with the constraint τ > x1 in a more mathematically convenient way, we consider
random variable Y = (τ − x1). The constraint τ < x2 becomes Y < tc where tc = x2 − x1 is
the cut-off threshold for Y . The conditional probability density of Y truncated at tc = x2−x1

has the expression

p(y, v|Y < tc) =
αλ1 exp(−λ1y) + (1− α)λ2 exp(−λ2y)

1− α exp(−λ1tc)− (1− α) exp(−λ2tc)
, y < tc

This is our mathematical model for the duplex lifetime constrained to the range of (0.7 ms,
300 ms). The experimental data consists of all measured dwell times between 0.7 ms and
300 ms. In terms of random variable Y , the experimental data has the form

Dexp = {Yj, j = 1, 2, . . . , n}

where n is the number of dwell time samples between x1 = 0.7 ms and x2 = 300 ms. Below
we are going to do two things

1. use the maximum likelihood estimation to determine the values of λ1, λ2 and α; and

2. estimate the uncertainties in the estimated values of these three parameters

3.1 Estimating the Values of λ1, λ2, and α

The log likelihood function is

logL(v) =
n∑

j=1

log p(Yj, v|Y < tc)

=
n∑

j=1

log[αλ1 exp(−λ1Yj) + (1− α)λ2 exp(−λ2Yj)]

− n log[1− α exp(−λ1tc)− (1− α) exp(−λ2tc)]
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To find the maximum, we differentiate the log likelihood function with respect to v =
(λ1, λ2, α).

∂

∂λ1

(logL(v)) =α ·
n∑

j=1

exp(−λ1Yj)(1− λ1Yj)

αλ1 exp(−λ1Yj) + (1− α)λ2 exp(−λ2Yj)

− α · n · exp(−λ1tc)tc
1− α exp(−λ1tc)− (1− α) exp(−λ2tc)

∂

∂λ2

(logL(v)) =(1− α) ·
n∑

j=1

exp(−λ2Yj)(1− λ2Yj)

αλ1 exp(−λ1Yj) + (1− α)λ2 exp(−λ2Yj)

− (1− α) · n · exp(−λ2tc)tc
1− α exp(−λ1tc)− (1− α) exp(−λ2tc)

∂

∂α
(logL(v)) =

n∑
j=1

λ1 exp(−λ1Yj)− λ2 exp(−λ2Yj)

αλ1 exp(−λ1Yj) + (1− α)λ2 exp(−λ2Yj)

+ n · exp(−λ1tc)− exp(−λ2tc)

1− α exp(−λ1tc)− (1− α) exp(−λ2tc)

So the maximum likelihood estimate v satisfies the equation

−→
F (v) = 0

where function
−→
F (v) = (F1(v), F2(v), F3(v))T is defined as

F1(v) =
n∑

j=1

exp(−λ1Yj)(1− λ1Yj)

αλ1 exp(−λ1Yj) + (1− α)λ2 exp(−λ2Yj)

− n · exp(−λ1tc)tc
1− α exp(−λ1tc)− (1− α) exp(−λ2tc)

F2(v) =
n∑

j=1

exp(−λ2Yj)(1− λ2Yj)

αλ1 exp(−λ1Yj) + (1− α)λ2 exp(−λ2Yj)

− n · exp(−λ2tc)tc
1− α exp(−λ1tc)− (1− α) exp(−λ2tc)

F3(v) =
n∑

j=1

λ1 exp(−λ1Yj)− λ2 exp(−λ2Yj)

αλ1 exp(−λ1Yj) + (1− α)λ2 exp(−λ2Yj)

+ n · exp(−λ1tc)− exp(−λ2tc)

1− α exp(−λ1tc)− (1− α) exp(−λ2tc)
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We use Newton’s method to solve this non-linear system where the Jacobi is approximated
using numerical differentiation. Once the values of v = (λ1, λ2, α) are determined, we can
calculate two probabilities

p1 = probability that the two dissociation modes described by v = (λ1, λ2, α)

produces a dwell time sample below x1 = 0.7 ms

p2 = probability that the two dissociation modes described by v = (λ1, λ2, α)

produces a dwell time sample above x2 = 300 ms

In terms of parameter values v = (λ1, λ2, α), probabilities p1 and p2 have the expressions

p1 =
α exp(λ1x1) + (1− α) exp(λ2x1)− 1

α exp(λ1x1) + (1− α) exp(λ2x1)

p2 =
α exp(−λ1(x2 − x1)) + (1− α) exp(−λ2(x2 − x1))

α exp(λ1x1) + (1− α) exp(λ2x1)

The number of dwell time samples below x1 = 0.7 ms that are from the two dissociation
modes described by v = (λ1, λ2, α) is

n1 = n · p1

1− p1 − p2

The number of dwell time samples above x2 = 300 ms that are from the two dissociation
modes described by v = (λ1, λ2, α) is

n2 = n · p2

1− p1 − p2

Note that in general n1 is not the number of all dwell time samples below x1 = 0.7 ms. In
experiments, the dwell time samples below x1 = 0.7 ms (which are not detected) may include
samples from very fast dissociation modes that are not well manifested in the range of 0.7
ms to 300 ms. Similarly in experiments, the dwell time samples above x2 = 300 ms may
include samples from very slow dissociation modes that are not well manifested in the range
of 0.7 ms to 300 ms.

3.2 Estimating the uncertainty in the determined parameters (λ1, λ2, α)

Let λ1(D), λ2(D) and α(D) denote the mapping from the data set D to the determined values
of parameters λ1, λ2 and α using the maximum likelihood method described above.

To facilitate the discussion below, we use Dexp to denote the experimental data set and
use D(i) to denote the i-th numerical data set. Let

λ1,exp = λ1(Dexp)

λ2,exp = λ2(Dexp)

αexp = α(Dexp)
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To estimate the uncertainty in λ1,exp, λ2,exp and αexp, we generate M independent numerical
data sets:

D(i) =
{
Y

(i)
j , j = 1, 2, . . . , n

}
, i = 1, 2, . . . ,M

Basically, each numerical data set is a collection of n independent samples drawn from the
conditional distribution

p(y, v|Y < tc) =
αλ1 exp(−λ1y) + (1− α)λ2 exp(−λ2y)

1− α exp(−λ1tc)− (1− α) exp(−λ2tc)
, y < tc

We draw n independent samples from the conditional distribution in two steps.

1. Draw m independent samples from the unconditional distribution

p(y, v) = αλ1 exp(−λ1y) + (1− α)λ2 exp(−λ2y)

Here m is sufficiently larger than n, for example, m = 2n. In MATLAB, m independent
samples from the unconditional distribution are generated using

rates = lambda2 + (lambda1− lamda2). ∗ (rand(1,m) < alpha)

samples = −log(rand(1,m))./rates

2. Collect all samples out of the m samples that satisfy the constraint Y < tc and then
take n samples. In MATLAB, this is done using

samples = samples(find(samples < tc))

samples = samples(1 : n)

We map each numerical data set to the determined values of λ1, λ2 and α using the maximum
likelihood method described above

λ
(i)
1 = λ1(D

(i))

λ
(i)
2 = λ2(D

(i))

α(i) = α(D(i))

We then calculate the standard deviations of {λ(i)
1 }, {λ

(i)
2 } and {α(i)}.

std(λ1) ≈

√√√√ 1

M − 1

M∑
i=1

(λ
(i)
1 − 〈λ1〉)2

std(λ2) ≈

√√√√ 1

M − 1

M∑
i=1

(λ
(i)
2 − 〈λ2〉)2

std(α) ≈

√√√√ 1

M − 1

M∑
i=1

(α(i) − 〈α〉)2
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The 95% confidence intervals for λ1,exp, λ2,exp and αexp can be approximated as

[λ1,exp − 2std(λ1), λ1,exp + 2std(λ1)]

[λ2,exp − 2std(λ2), λ2,exp + 2std(λ2)]

[αexp − 2std(α), αexp + 2std(α)]

In the paper, we report std(λ1), std(λ2) and std(α) as the standard errors for λ1,exp, λ2,exp

and αexp.

4 Repetition of Hybridization Experiments to Test Consistency

To test the consistency of our hybridization results, experiments were repeated twice for the
59A-10A and 59B-10B syntheses, and for the 59A-20 synthesis. In this section, we report
the measured hybridization probabilities and their standard deviations at multiple fishing
(exposure) times, for each experiment, and we compare the model parameters determined
from different experiments.

Calculation of the standard deviation for the measured probability at each fishing time is
done as follows. Recall that for each fishing time tj, nj denotes the number of fishing events

and p
(e)
j denotes the exact probability of hybridization. The measured number of bound

events Xj at fishing time tj is a binomially distributed random variable, with distribution

probability p
(e)
j and number of trials nj. The expected value of Xj is E[Xj] = np

(e)
j and the

variance is Var[Xj] = np
(e)
j (1− p(e)

j ). The exact probability of hybridization is approximated

by the measured fraction of hybridization: p
(e)
j ≈ pj = Xj/nj. Note that while p

(e)
j is a

deterministic number, the measured fraction of hybridization pj = Xj/nj is still a random

number. The expected value of pj is E[pj] = p
(e)
j and the variance is Var[pj] = p

(e)
j (1 −

p
(e)
j )/nj. Since the exact value of p

(e)
j is unknown, the variance of pj is approximated as:

Var[pj] ≈ pj(1− pj)/nj. From the variance, we calculate the standard deviation as std[pj] ≈√
pj(1− pj)/nj. For all three syntheses (59A-10A, 59B-10B and 59A-20), the measured

hybridization probability and 95% confidence intervals (2 × the standard deviation) from
separate experiments showed consistent trends (Fig. S2).

We also examined the differences in the fitted parameters that model the data for each
experiment. Table S1 reports the model parameters determined from each experiment,
showing that the observed experiment-to-experiment variability was relatively small. For
each experimental condition, combined data sets from both experiments were reported and
modeled in the main text (Fig. 2; Table 1, i-iii).

References

[1] Imagej - a public domain java image processing program. Available at
http://rsb.info.nih.gov/ij, developed by Wayne Rasband, National Institutes of Health,
Bethesda, MD.

10



Table S1: Comparison of fitted hybridization model parameters for repeated ex-
periments.

Target-ODN∗ Exprm. Total No. r ± s.d.‡ k¶on ± s.d. q ± s.d.‡

Synthesis No.† of events (s−1) ×106 (M−1s−1)

59A-10A 1 4557 117.7± 3.8 21.4± 0.7 0.97± 0.004

– 2 2541 105.7± 5.1 19.2± 0.9 0.97± 0.004

59A-20 1 2040 45.9± 2.5 8.3± 0.5 0.99± 0.01

– 2 2962 54.0± 2.2 9.8± 0.4 0.99± 0.01

59B-10B 1 2929 127.9± 8.6 23.3± 1.6 0.79± 0.01

– 2 2647 112.1± 10.2 20.4± 1.9 0.79± 0.01

* Oligodeoxynucleotide = ODN. Each experiment had 59 mer target DNA in the cis chamber, and in
separate experiments 10 mer or 20 mer complimentary ODNs in the trans chamber at [O] = 5.5 µM.
Two syntheses of 59 mer target DNA (59A,B) and 10 mer binding ODNs (10A,B) were used separately
in each experiment listed. A single synthesis of 20 mer ODN was used.

† Combined data sets were modeled and results reported in the main text (Fig. 2; Table 1, i-iii).
‡ Method of estimating {q, r} and their uncertainty is detailed in Section 2. All parameters are reported

in the form of (estimated value) ± (standard deviation)
¶ Rate constant and standard deviation computed using kon = r/[O], given the value and standard

deviation for r.
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Figure S2: Measured hybridization probability are consistent in repeated experi-
ments for (I) 59A-10A, (II) 59B-10B, and (III) 59A-20 syntheses. For each exper-
iment, the measured probability data points pj are shown with error bars representing 95%
confidence intervals (pj − 2

√
pj(1− pj)/nj, pj + 2

√
pj(1− pj)/nj), where pj = Xj/nj and

Xj is the number of measured hybridization events out of nj trials at exposure times shown.
The model curves shown are fitted to the combined data sets (black) and have parameter
values reported in the main text (Table 1, i-iii). Fitted model parameters for each data set
are reported in Table S1. Longer exposure times (up to 500 ms) measured in (II-III) were
consistent with fitted q parameters, but are not displayed to show a comparative close-up
of the transient and steady-state trends. Experimental conditions are reported in the main
text.
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