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Simulations 
 
Simulations were performed using custom written C++ software. Discrete time steps of 1 µs 
were used, during which single molecules would diffuse, fluoresce and undergo FRET. 
Unless stated otherwise, the diffusion coefficient was D = 3*108 nm2 s-1, and the extinction 
coefficient of each fluorophore was 105 M-1  cm-1. The confocal spot was modeled with an 
incident laser intensity of 103 W cm-2 at its center, and decaying as a 3D Gaussian with radial 
width wo =  500 nm, and axial width zo= 1.5 µm.  
 
PDA fitting 
 
After calculating the shot-noise limited FRET distribution  *P E , it was fit to the observed 
distribution using a simple golden section method (31) to minimize the reduced chi-squared 

test statistic 2

r
  (23): 
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where y  is the number of floating model parameters, z  is the number of non-zero bins, and 

 i
Freq X and  M i

Freq X  represent the frequency of data falling into bin i  in either the data or 

prediction, respectively. 2 1r   indicates a perfect fit, while 2 2r   generally indicates a poor 

fit.  
 
Klenow Fragment (KF) of DNA polymerase I  
 
The preparation of doubly labeled exo- KF has been described (8, 34). KF was labeled at 
positions 550 and 744 with ATTO647N and Cy3B respectively. The specificity of the 
labeling orientation was ≈88%; the extent of labeling was ≥ 70%. Labeled KF was a donation 
from Cathy M. Joyce and Olga Potapova. 
 
DNA 
 
Amino-modified oligonucleotides (IBA, G�ttingen, Germany) were labeled using NHS-
conjugated fluorophores (Cy3B-NHS from GEHealthCare, Little Chalfont, UK, and 
Atto647N-NHS from ATTO-TEC, Siegen, Germany) according to the manufacturers’ 
instructions. Oligos for double-stranded DNAs were purified on a reverse-phase column 
(µRPC C2/C18, GE Healthcare), while oligos for DNA hairpins were purified via denaturing 
PAGE. For DNA sequences, see Supporting Material Fig. S1. 
 
 

 



Supporting Material Text  

PDA implementation details 

The expected  *P E  distribution excluding background was given in Eq. 3. Background in 

solutions containing no significantly fluorescent contaminants is due primarily to Raman 
scattering of the laser off of water molecules in the confocal volume; it is therefore poisson-
distributed in time and independent of emission from the fluorescent particle. Incorporating 

background, the  *P E
 
distribution is: 
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where  P B  is the distributions of background photons per burst in the  -emission channel,  

r  are mean background rates, T  is the duration of the burst and  ,P F T  is the joint 

distribution of fluorescence photons and burst durations (we use the joint distribution because 
F  and T  are dependent variables (1)). 
 

In practice, the distribution of fluorescence photons  P F  is unknown, but can be 

approximated from the experimental distribution of total photons,  P N , via simple 

subtraction (2): 
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This method is a simple approximation of the true  P F  distribution; a more accurate 

deconvolution procedure has been described elsewhere (3). 
 
 
PDA with static heterogeneity 
 
PDA can be generalized in two ways: it can be extended to predict the shot-noise limited 
distribution for multiple molecules with different FRET values (static heterogeneity), or for a 
single molecule with multiple interconverting FRET states (dynamic heterogeneity). To 
account for static heterogeneity, Eq. 3 can be generalized to account for k  species, where the 

j th species has concentration jc  and fluorescence intensity distribution  jP F : 
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This method requires “brightness correction” to calculate the distributions  jP F  from the 

overall  P F , a process described in detail in (4); in our work, we use Eq. S4 only in cases 

of equally bright fluorescent species, allowing us to avoid the brightness-correction step and 

assume that all    jP F P F . We note that a very useful extension of this method is model-

independent extraction of the maximum-likelihood distribution of *E  from a given 

distribution  *P E , which we do not employ in the current work, but has been described in 

previous publications (3, 5). 
 
 
PDA with dynamic heterogeneity 
 
To account for dynamic heterogeneity, we recently generalized the PDA method to 
incorporate the existence of m dynamically-interconverting states i  with mean proximity 

ratios *iE
 
(6). The proximity ratio for each burst is calculated on the basis of fluorescence 

photons emitted in each state i , if , and the subset of those photons emitted in the acceptor 

channel, ia : 
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where the acceptor photon counts ia  follow a binomial distribution with respect to if  and iE , 

as in Eq. 4. The FRET for each burst depends on the burst duration T , and on the distribution 
of times it spends in each state, ( | )P T , which we determine using a Monte Carlo approach 
to simulate kinetic transitions. We assume uniform illumination intensity throughout the 
burst, such that the distribution of if  is multinomial with residence times i : 
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where iF f  and ib  is the brightness of molecule i . The overall distribution of FRET 

values is then:  
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This method is described in detail in (6). 
 
 
Arrival-time PDA 
 



In the dynamic PDA method, we use a Monte Carlo approach to simulate switching among 
FRET states for each burst, and therefore determine the distribution of times the molecule 

spends in each state,  P  . We then determine the distribution of photons among different 

states, ( )P f


, by assuming uniform excitation intensity, such that ( )P f


 
is multinomial with 

respect to  P  , Eq. S6.  

 
To improve the accuracy of our method, and preserve arrival time information for analysis 
with BVA, we eliminated the uniform-intensity assumption (or any other focal volume 

geometry assumption) for determining ( )P f


. We did this by incorporating  P t


, the 

distribution of experimental photon arrival times within the burst. Instead of determining 
( | )P f 
 

 using a uniform-intensity assumption, we determine ( | )P f t
 

 by running our 
Monte-Carlo state-switching algorithm on a given burst, and simply counting the number of 
experimental photon arrival times occurring within each simulated state i (Fig. S9). Whereas 
the uniform intensity assumption assumes a uniform arrival-time distribution over time, the 
updated method draws from the experimental arrival-time distribution, eliminating the need 
for any assumptions about focal volume geometry and improving the accuracy of dynamic 
PDA predictions (Fig. S2). This is similar to the “recoloring” method recently used by 
Gopich and Szabo (7). The predicted E* distribution using this method is: 
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We note that this approach is valid as long as all states in the experimental sample have 
similar photon arrival time distributions. This is because the true state from which an 
experimentally observed photon arises is unknown; however, when our Monte Carlo 
approach simulates state-switching, photons are assigned to a state regardless of their origin 
(Fig. S9). If the two states had significantly different distributions (e.g. due to very different 
brightnesses), these distributions would be averaged in our PDA predictions, and could 
produce inaccurate results.    
 

 
Analytical method of obtaining confidence intervals  

In the main text we proposed a Monte Carlo method of calculating accurate confidence 
intervals on *E .  For Gaussian distributions of ij

  with standard deviation *E  , however 

(Eq. 5), the sampling distribution of standard deviations of the FRET has an analytical 
solution  (8): 
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where   is the gamma function:   1

0

z tz t e dt
     . Because the 

A
F  giving rise to ij  is 

binomially distributed, the Gaussian assumption is valid for large n .  
 



Bonferroni correction for multiple-hypothesis testing 
 
When determining the confidence intervals for BVA, we employ a Bonferroni correction for 
multiple hypothesis testing (9), such that for the desired confidence interval  100% 1CI    
with significance level  , we adjust the significance level to / R , where R  is the number of 
bins tested. This is because, as we test for dynamics in R = 20 separate bins, we effectively 
test each data set for the presence of dynamics 20 times. The Bonferroni correction simply 
avoids the increase in false positive rate this would cause if no correction were implemented. 

The Bonferroni-corrected upper-tail confidence interval *

CI

E
s  is defined according to 
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Window size in BVA 
 
The impact of photon window size, n, on the detection of dynamics is small near the diffusion 
timescale (Fig. S4), though smaller windows are less computationally expensive to work 
with; unless otherwise indicated, we therefore set n = 5 throughout the text and in 
supplemental figures. 
 
 
BVA accurately predicts the 

*E
s  of static FRET pairs 

 
To test the ability of BVA to accurately predict the standard deviation, 

*E
s , of molecules with 

static FRET, we simulated a series of molecules with different underlying FRET efficiencies 
( * 0.2, 0.5, 0.8E  ). We first used Photon Distribution Analysis (PDA) to confirm that the *E  
distributions were shot-noise limited, and therefore exhibited no detectable static or dynamic 

heterogeneity (Fig. S5, A; all 2

r
  close to 1). We then used BVA to calculate the 

*E
s  over all 

*E  for these perfectly static FRET standards (Fig. S5, B, triangles), as well as a strict, 99.9% 

upper confidence interval, *

CI

E
s  (data below the confidence interval fall in the gray region). In 

all cases, the measured 
*E

s  fell below the confidence interval, showing good agreement with 

the hypothesis that no within-burst dynamics were present.  
 
 
BVA shows no dynamics in a donor-only DNA control 
 
Donor-only DNA’s are an important control in ensuring that a given optical setup is not 
introducing artifactual dynamics into PDA analyses (2, 10). As such dynamics could in 
principle give rise to a dynamic signal by BVA, we analyzed a donor-only DNA sample to 
ensure this was not the case. The donor-only control is a double-stranded DNA labeled with 
only a donor fluorophore (Fig. S1, A); it therefore has no FRET, but * 0.15E   due to 

leakage of donor emission into the acceptor channel (11). This leakage is unaffected by any 
dynamic heterogeneity in the DNA itself (assuming the DNA does not cause diffusion-
timescale dynamic changes in the donor emission spectrum), but is sensitive to spatial 
mismatches in the detection efficiencies of the donor- and acceptor-emission detectors. We 
therefore characterized the donor-only control by PDA and BVA, to ensure our optical setup 
does not introduce apparent dynamics into otherwise-static samples when analyzed with 



smFRET. We analyzed the donor-only control with both PDA and BVA; as expected, it 

exhibited a shot noise-limited *E  distribution ( * 0.151 .002E  , 2 1.34
r

  ), and all *Es  

values fell well within the 99.9% confidence interval (Fig. S10). Dynamics detected in our 
experiments on static and dynamic hairpin DNA’s are therefore not due to optical artifacts. 
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Figure S1. DNA and hairpin design. The nucleotides highlighted in green and red were 
labeled with Cy3B (donor) and Atto647N (acceptor) fluorophores respectively. All DNAs 
were PAGE-purified before analysis. (A) Donor-only-labeled DNA. (B) The hairpin construct 
is composed of a 31-nucleotide double-stranded region, a two-nucleotide single-stranded gap, 
another 5-nucleotide double-stranded region and a 30-adenine single stranded loop. The 
hairpin fluctuates dynamically due to spontaneous melting and re-annealing of the 5-
nucleotide double stranded region. (C) As a control for the open (melted) form of the hairpin, 
we constructed a similar hairpin with a mismatch in the 5-nucleotide double-stranded region 
(highlighted in blue). (D) As a static control for the closed (annealed) form of the hairpin, we 
replaced the 30-adenine loop with a 26-basepair double-stranded region. (E) Hairpin 
template-primer used in Klenow Fragment studies. The 3’ terminus contains a 
dideoxynucleotide to prevent successful nucleotide incorporation. 
 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. BVA of PDA predictions can accurately predict the *Es  profile of simulated 

molecules. We simulated a series of molecules undergoing dynamic changes in FRET 

between 1 * 0.3E   and 1 * 0.7E   with equal forward and reverse rates of (A) 40 s-1, (B) 

1000 s-1 and (C) 25,000 s-1, with forward and reverse rates of 800 s-1 and 200 s-1 respectively 
(D), or with forward and reverse rates of 200 s-1 and 800 s-1 respectively (E) . In all cases, 
PDA was used to predict the shot-noise limited histogram expected for each species (using 
the given parameters). BVA was then run on both the simulated data ( *Es , black and red 

triangles), and the PDA-predicted data, ( *Es , green triangles), and compared. Qualitatively, 

the two sets of triangles (and therefore *Es  values) matched up very well, with no apparent 

systematic deviations. For comparative purposes, we also plotted PDA predictions (A–E, blue 
lines) using our original dynamic PDA method (6), which assumes a uniform excitation 
intensity and does not preserve photon arrival-time data (and therefore cannot be analyzed by 
BVA; see Supporting Material Text). In general, the “arrival-time PDA” method we use in 
this work (green lines) outperforms the original PDA method (blue lines) in accurately 
recapitulating the E* histogram. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure S3. Effect of background on BVA. To illustrate the effects of background on BVA, 
we first simulated (A) a constant-FRET control sample (same as in Fig. S5), and (B) a 
strongly dynamic sample (same as in Fig. 3, B). We then repeated these simulations, but 
added fairly high background (10kHz in the green-excitation green-emission channel, 6kHz 
in green-excitation red-emission, more than twice that of typical experimental background 
counts). We performed BVA on the no-background simulations and plotted them, then 
overlaid the sE*  of the high background simulations (green triangles). Whereas the static 
simulation showed little difference between the sE* of samples with and without background, 
the dynamic simulation showed a small but consistent decrease in sE* at intermediate values 
of E*, where dynamics were clearest; this is due to the fact that background, like static 
species, emits photons in a binomial fashion with respect to the donor and acceptor emission 
channels, lowering dynamic sE* values. When using BVA, high background can therefore 
produce false negatives for dynamics, though it will not generate false positives. We note that 
background, if high enough to warrant it, can be incorporated into the “Arrival-Time PDA” 
approach (see Supporting Materials Text).  
 



 

 

 

 

 

 

 

 

 
Figure S4. Sensitivity of BVA to dynamics as a function of photon window size, n. As in 
Fig. 3, D and E, we plotted the Dynamic Score (DS) for a series of simulated two-state 
dynamic species with different fluctuation timescales, while varying the photon window size, 
n, used to perform BVA. DS is a least-squares-like measure of the difference between the 
expected ( *E ) and observed ( *Es ) standard deviations over all values of *E  for which 

dynamics are significant, Eq. 9, such that all nonzero points indicate significant evidence for 
dynamics, and the larger the DS, the greater the evidence for dynamics. We found that 
increasing the photon window size has two effects: it increases the DS around the diffusion 
timescale, and slightly translates the DS plot to slower timescales. This translation results in 
detection of slow dynamics that were not previously detectable (~10-1 s timescale), but failure 
to identify faster dynamics (~10-5 s) that had been detected at the smaller window size. As a 
result, no photon window is optimal for detecting dynamics on all timescales, but faster or 
slower dynamics may be more easily detected with smaller or larger photon windows, 
respectively. Altering photon window size may therefore be useful for extending the range of 
detectable dynamic timescales with BVA. 
 
 



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure S5. Simulations show good agreement between *Es  and confidence intervals for 

simulated static FRET species. Simulations were carried out for FRET pairs with *E  

values of either 0.2, 0.5 or 0.8. (A) Photon Distribution Analysis (PDA) was used to confirm 
that simulated data exhibits no broadening beyond the predicted shot-noise limited histogram 
for each value of *E  ( 2 1r   in all cases). (B) These data were subsequently analyzed by 

BVA, using a photon window size of n=5. In all cases, *Es  values (triangles) fall below the 

strict, 99.9% one-tail confidence interval (gray region), as expected for static FRET species. 
 
 
 
 



 
 
 
 
 

 
 
Figure S6. Static hairpin controls show broadening beyond shot noise. We analyzed a 
mixture of open and closed static control hairpins with smFRET and fit the distributions with 
PDA (same data as in Fig. 4, B). Whereas the distributions could be fit by assuming a 

Gaussian distribution of originating FRET values (black line; * 0.285 0.002
open

E   ,  

0.18 0.01 nmr

open
   , * 0.905 0.001

closed
E    and 0.28 0.02 nmr

closed
   ; 2

1.76
r

  ), shot noise 

alone could not account for the widths of each distribution (red line; * 0.285
open

E  , 

* 0.905
closed

E  , 
2 5.90r  ). 
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Figure S7. Static three-species models cannot account for DNA Pol I dynamics. As an 
alternative to the two-species static predictions in Fig. 5, in which we fit for the standard 
deviation of each of two species, we tested whether a three-species static model, where all 
widths are fixed (σr = 0.18 nm) but relative concentrations of each species are allowed to 
vary, could account for the data in the (left) unliganded polymerase, (center) Pol-DNA binary 
complex or (right) ternary complex. We first used PDA to achieve a fit to the E* histograms 
(top panels); we held the FRET of the fingers-open and fingers-closed states fixed 

( 1 * 0.5E  , 3 * 0.71E  ) while adding an intermediate state ( 2 * 0.605E  ), and fitting 

using two parameters to describe the frequencies of the first two species (p1 and p2; the 
frequency of the third species, p3, is simply: 1 – p1 – p2). While in all cases the three-species 

fit provided a satisfactory match to the E* histogram ( 2 2r  ), BVA plots (bottom panels) 

showed that the sE* for the static predictions (green triangles) deviate strongly from the sE* 
observed for the data (black and red triangles). Indeed, the measured sum of squared 
residuals, SSR, between each set of data and its predicted sE* was similar to that of the static 
two-state predictions in Fig. 5, being about an order of magnitude larger than the dynamic 
model predictions for the same data. 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
Figure S8. The dynamic model of E* heterogeneity in the Klenow Fragment is robust to 
fluctuation timescale. We repeated our BVA analysis of the unliganded Klenow Fragment 
(left), Pol-DNA binary complex (middle) or Pol-DNA-dNTP ternary complex (right), from 
Fig. 5. In addition to analyzing experimental data (grey) and best-fit dynamic (red circles) 
and static (black circles) PDA predictions with BVA, we also analyzed dynamic predictions 
where both the forward and backward rate constants, kopen and kclose, had been increased 
(green circles) or decreased (blue circles) by ten-fold. In all cases, the dynamic predictions 
achieved a lower SSR with respect to the experimental data, than did the static prediction.  
 

 

 



 
 

 
 
 

 

Figure S9. Schematic diagram of arrival-time dynamic PDA method. A single burst is 
shown above, beginning at time 0 and ending at time T, with F photons (arrival times 
indicated with grey circles). To implement either the original, or arrival-time, dynamic PDA 
method, we first simulate kinetic switching among states; for the burst shown, the molecule 
switches stochastically from state 1 to state 2 about half-way through the burst. In the original 
dynamic PDA method, the total times spent in each state, τ1 and τ2, were recorded; assuming 

a uniform intensity distribution, the distribution of photons in each state, ( )P f


, is simply a 

multinomial with the time spent in each state, Eq. S6. In the updated “Arrival-Time” dynamic 
PDA method, however, we directly measure the number of experimental photon arrival times 
falling in each simulated state, f1 and f2. Unlike the original PDA method, this approach 

effectively draws from the arrival time distribution to calculate ( )P f


, incorporating details 

about the illumination geometry that are lost under the uniform-intensity assumption. As a 
result, this method produces more accurate PDA predictions for diffusing dynamic species 
(Fig. S2), while preserving arrival-time information for analysis with BVA. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure S10. PDA and BVA analysis of an experimental donor-only FRET control. This 
control is a double-stranded DNA labeled with only the donor fluorophore (Fig. S1, A), such 
that the apparent proximity ratio is due only to spectral leakage of donor emission into the 
acceptor detection channel. PDA shows a shot noise-limited *E  distribution 

( * 0.15 .0018E   , 2 1.34r  ; top panel), while BVA shows consistency of the observed 

*Es  with a static underlying FRET value, as expected (bottom panel). 



Supporting References: 

1.  Fries, J. R., L. Brand, C. Eggeling, M. Kollner, and C. A. M. Seidel. 1998. Quantitative 
identification of different single molecules by selective time‐resolved confocal fluorescence 
spectroscopy. J. Phys. Chem. A 102:6601‐6613. 

2.  Antonik, M., S. Felekyan, A. Gaiduk, and C. A. M. Seidel. 2006. Separating structural 
heterogeneities from stochastic variations in fluorescence resonance energy transfer 
distributions via photon distribution analysis. J. Phys. Chem. B 110:6970‐6978. 

3.  Kalinin, S., S. Felekyan, A. Valeri, and C. A. M. Seidel. 2008. Characterizing multiple molecular 
states in single‐molecule multiparameter fluorescence detection by probability distribution 
analysis. J. Phys. Chem. B 112:8361‐8374. 

4.  Kalinin, S., S. Felekyan, M. Antonik, and C. A. M. Seidel. 2007. Probability distribution analysis 
of single‐molecule fluorescence anisotropy and resonance energy transfer. J. Phys. Chem. B 
111:10253‐10262. 

5.  Watkins, L. P., H. Y. Chang, and H. Yang. 2006. Quantitative single‐molecule conformational 
distributions: A case study with poly‐(L‐proline). J. Phys. Chem. A 110:5191‐5203. 

6.  Santoso, Y., J. P. Torella, and A. N. Kapanidis. 2010. Characterizing Single‐Molecule FRET 
Dynamics with Probability Distribution Analysis. Chemphyschem 11:2209‐2219. 

7.  Gopich, I. V., and A. Szabo. 2009. Decoding the Pattern of Photon Colors in Single‐Molecule 
FRET. J. Phys. Chem. B 113:10965‐10973. 

8.  Kenney, J. F., and E. S. Keeping. 1951. The Distribution of the Standard Deviation. In 
Mathematics of Statistics, Pt. 2, 2nd ed. Van Nostrand, Princeton, NJ. 170‐173. 

9.  Abidi, H. 2007. Bonferroni and Sidak corrections for multiple comparisons. In Encyclopedia of 
Measurement and Statistics. Sage, Thousand Oaks (CA). 103‐107. 

10.  Nir, E., X. Michalet, K. M. Hamadani, T. A. Laurence, D. Neuhauser, Y. Kovchegov, and S. 
Weiss. 2006. Shot‐noise limited single‐molecule FRET histograms: Comparison between 
theory and experiments. J. Phys. Chem. B 110:22103‐22124. 

11.  Lee, N. K., A. N. Kapanidis, Y. Wang, X. Michalet, J. Mukhopadhyay, R. H. Ebright, and S. 
Weiss. 2005. Accurate FRET measurements within single diffusing biomolecules using 
alternating‐laser excitation. Biophys. J. 88:2939‐2953. 

 

 


