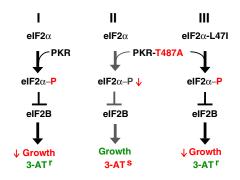
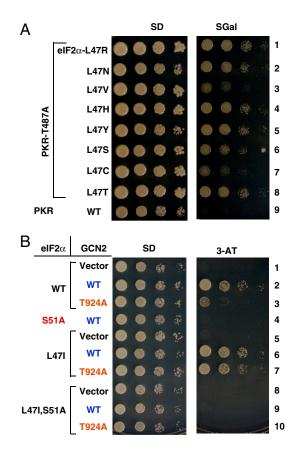
Supplemental Information

Dey et al. 10.1073/pnas.1014872108

SI Methods


NMR Methods. The bacterial expression vector encoding residues 3 to 175 of Saccharomyces cerevisiae eIF2a was described previously (1). Isotopically labeled WT eIF2 α , eIF2 α -L50S, and eIF2 α -I62G were obtained from 2-L cultures in minimal M9 media containing [U-98%] 1.0 g/L ¹⁵N-ammonium chloride as the sole source of nitrogen, or [U-98%] 1.0 g/L ¹⁵N-ammonium chloride and [U-99%] 2.0 g/L 13 C-glucose as nitrogen and carbon sources, respectively. All eIF2a proteins were purified as described previously (1) with the final size exclusion chromatography step using a buffer solution containing 20 mM sodium phosphate, pH = 7.0 and 350 mM Na₂SO₄, 10 mM DTT, 0.5 mM EDTA, and 0.5 mM benzamidine. Proteins were concentrated to 0.5-0.9 mM in 0.5 mL for NMR analysis, and 10% of D2O was added to each sample for spectrometer field lock. Backbone assignments of all nonproline residues (except Lys162) of WT protein were derived from a suite of triple-resonance spectra (2) and a 3D ¹⁵N-edited NOESY (3), recorded at 25 °C on a 500 MHz spectrometer (room temperature probe) using an

 Dar AC, Dever TE, Sicheri F (2005) Higher-order substrate recognition of eIF2α by the RNA-dependent protein kinase PKR. Cell 122:887–900.


- Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. *Prog Nucl Mag Reson Spectrosc* 34:93–158.
- Zhang O, Kay LE, Olivier JP, Forman-Kay JD (1994) Backbone ¹H and ¹⁵N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR 4:845–858.

¹⁵N/¹³C-labeled sample. Assignments of two mutant proteins were obtained by direct transfer from the WT protein for the majority of residues; sets of HNCA, HNCO and HN(CA)CO experiments on ¹⁵N/¹³C-labeled samples were sufficient to derive assignments for the Ser51 loop and to confirm the accuracy of assignments over the entire sequence of mutant proteins. The TALOS+ software package was used to convert backbone chemical shifts to order parameter values using the random coil index approach (4, 5). A transverse relaxation optimized spectroscopy (TROSY) version of $\{^{1}H\}$ – ^{15}N NOE experiment was recorded on ¹⁵N-only labeled samples at 25 °C on an 800-MHz spectrometer (room temperature probe); 100 points were collected in the indirect dimension (2240-Hz spectral window), 24 transients per point; recycle delays were 9 s of recovery followed by 6 s of saturation of amide protons or 15 s of recovery (no saturation) in the reference spectrum. Spectra were processed and peak intensities measured using the nmrPipe software package (6).

- Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223.
- Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971.
- Delaglio F, et al. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293.

Fig. S1. Schematics of PKR growth phenotypes in yeast. (Scheme I) Phosphorylation of WT eIF2 α by PKR results in eIF2B inhibition, poor yeast growth, and induction of *GCN4* expression conferring a 3-AT-resistant phenotype. (Scheme II) Impaired phosphorylation of eIF2 α by PKR–T487A reverses the growth phenotypes. (Scheme III) The eIF2 α -L47I mutation restores phosphorylation by PKR–T487A and the WT growth phenotypes.

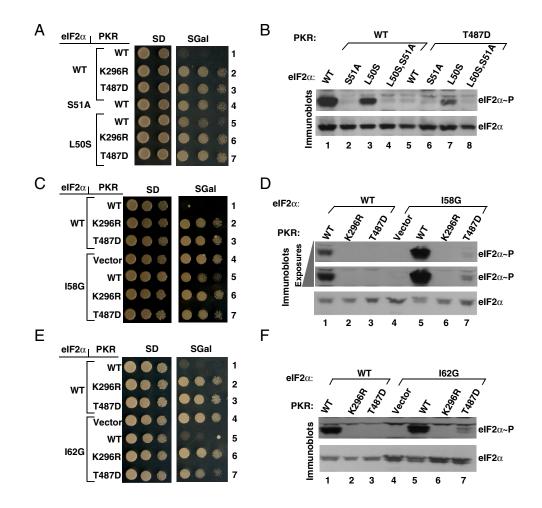
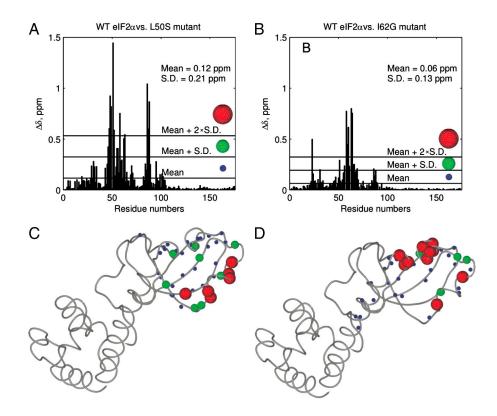


Fig. S2. eIF2 α Leu47 mutations and GCN2. (*A*) eIF2 α -L47V and eIF2 α -L47C mutations enhance PKR-T487A toxicity in yeast. Plasmids expressing PKR or PKR-T487A under control of a yeast *GAL-CYC1* hybrid promoter were introduced into yeast strains expressing the indicated eIF2 α proteins. Transformants were grown to saturation, and 4 mL of serial dilutions (of OD₆₀₀ = 1.0, 0.1, 0.01) were spotted on minimal SD and SGal medium and incubated 3 d at 30 °C. (*B*) eIF2 α -L47I mutation restores *GCN4* translational control in yeast expressing the helix α G mutant GCN2-T924A. Yeast strains expressing the indicated WT and mutant versions of eIF2 α were transformed with an empty vector or plasmids expressing GCN2 or GCN2-T924A under the control of its native promoter. Transformants were grown, serially diluted and spotted on SD and SD plus 3-AT (30 mM) medium supplemented with essential nutrients. Plates were incubated 3 d at 30 °C.

А	1	9 1	186	:	304
	elF2α:		Helical	αβ	-
_		NTD-		🗲 - CTD - 🕨	•
В					Ser51
			*aa		$\downarrow \downarrow \checkmark \downarrow$
Baker's Yeast Fission Yeast		NRFPEVDELV	MVNVQQIAEM VVNVRQIQEM	GAYVKLLEYD	NEGMILLSE L <mark>S</mark> RRRIRS Q NEGMVLLSE L <mark>S</mark> RRRIRS Q
Worm Fruit Fly		NQFPDVEETV ERYPEIEDVV	VANVKMIADM MVNVLSIAEM		DEGMILLSE L <mark>S</mark> RRRIRS N NEGMILLSE L <mark>S</mark> RRRIRS N
Mouse	MPGLSCRFYQ	HKFPEVEDVV	MVNVRSIAEM	GAYVSLLEYN	NDGMILLSE L SRRRIRS N
Human	MPGLSCRFYQ	HKFPEVEDVV	MUNVRSIAEM	GAYVSULEYN	NEGMILLSE L <mark>S</mark> RRRIRS N
Debende Veent		*	avera avera	*	** KYOKSRTVHS ILRYCAEKFO
Baker's Yeast Fission Yeast		VVVLRVDKEK	GYIDLSKRRV GYIDLSKRRV		RFNKSKAVHS IMRHIAEKHN
Worm Fruit Fly	KLIRVGRSES KLIRVGKTEP		GYIDLSKRRV GYIDLSKRRV		RFANAKMVNS ILRHVAEQVG RFAKAKAINS LLRHVADILG
Mouse	KLIRIGRNEC	VVVIRVDKEK			KFTKSKTVYS ILRHVAEVLE
Human	KLIRIGRNEC	VVVIRVDKEK	GYIDLSKRRV	SPEEAIKCED	KFTKSKTVYS ILRHVAEVLE
Debende Weent				* * *	* *
Baker's Yeast Fission Yeast		YKTIAWPLS. YTTIGWPLY.	RKYGHAY		ETVWEGIEPP SKDVLDELKN DHVFEGLEPP KSGVINDLLA
Worm Emuin Elec			KEKRKAA.SY		
Fruit Fly Mouse	YTKDEQLESL	FORTAWVFDD	KYNNKTV.AY KYKRPGYGAY	DAFKHAVSD.	PTVFDECN.L E PETKEVLL PSILDSLD.L NEDEREVLIN
Human	YTKDEQLESL	FORTAWVFDD	KYKRPGYGAY	DAFKHAVSD.	PSILDSLD.L NEDEREVLIN
Baker's Yeast	VTERBTTDOA		Greventrat		STEQMOVKVK IVAABLYVLT
Fission Yeast	QISRRITPOP	IKIRADVEVT	GFGYEGINAI	KAALKAAEDV	HTEEVPIKVK LVAPPLYVLL
Worm Fruit Fly	DIRKKI TPQA NIKRKI VSPT	VKIRADIEVS	CFDYDGIDAV	KAALIAGKNC	SNGTFPIKIN LIAAPHFVVT STEELPIRIN LIAPPLYVMT
Mouse	NINRRITPQA	VKIRADIEVA	CYGYEGIDAV	KEALRAGLNC	STENMPIKIN LIAPPRYVMT
Human	NINRRUTPQA	VKIRADIEVA	Grenegidya	KEALRAGLNC	STENMPIKIN UIAPERYVMT
Baker's Yeast	TOALDKOKGI	EQLESAIEKI	TEVITKYGOV	CNITMPPKAV	* ** TATEDAELQALLESK
Fission Yeast		KKLEEAIGAI		CTVKMKPKAV	
Worm Fruit Fly		EAVNSILDTI KALEVAIEHI		FTIKEEARIV	
Mouse		SVLNQAMAVI		FNVQMEPKVV	
Human	ULLERIEG L	SVLSQAMAVI	KEKIEEKRGV	FNVQMEPKVV	TDTDETELARQMERL
Baker's Yeast	ELDNRSDSED	* * DE			.DE.SDDE
Fission Yeast	EKENAEISGD	EED	DOMDARESC	DDNDVVAC	DQSGSE
Worm Fruit Fly	EDEDEEEDED EAENAQVAGD		DQQVDAEEAS GMQFDPEKEF		
Mouse	ERENAEVDGD			A	
Human	EKENAEADGD	DD	•••••	A	.EEMEAKAED


Fig. S3. Conservation of eIF2α primary and tertiary structures. (A) Schematic of eIF2α structure depicting the N-terminal domain (NTD) composed of an OB-fold and helical domain and the C-terminal domain (CTD) containing an αβ fold. (B) Multiple amino acid sequence alignment of eIF2α from *Saccharomyces cerevisiae* (baker's yeast); *Schizosaccharomyces pombe* (fission yeast), *Caenorhabditis elegans* (worm); *Drosophila melanogaster* (fly); *Mus musculus*; and *Homo sapiens* (human). Identical residues are boxed. Perfect sequence conservation flanking Ser51 (red) is shown in reverse type. Residues participating in the hydrophobic network surrounding Ser51 are marked by red arrows.

PNAS PNAS

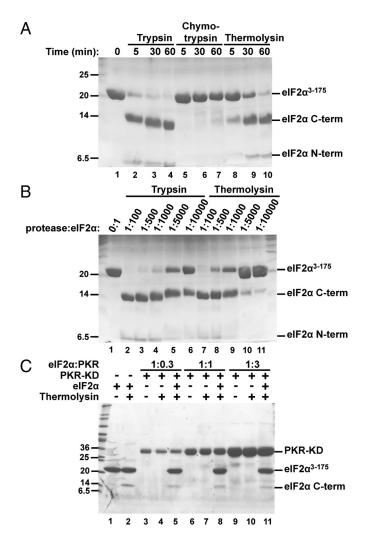


Fig. S4. eIF2 α -L50S, -I58G and -I62G mutations restore Ser51 phosphorylation by PKR-T487D in vivo. (*A*, *C*, and *E*) Derivatives of yeast strain H2507 expressing the indicated eIF2 α and PKR proteins were grown to saturation, and 4 mL of serial dilutions (of OD₆₀₀ = 1.0, 0.1, 0.01) were spotted on SD or SGal medium and incubated 3 d at 30 °C. (*B*, *D*, and *F*) Immunoblot analysis of eIF2 α phosphorylation in yeast expressing PKR or PKR-T487A. Yeast strains expressing the indicated eIF2 α and PKR proteins were grown to exponential phase in SC-ura medium and then shifted to SGal-ura medium for 2 h to induce PKR expression. Whole cell extracts were prepared and total proteins were subjected to immunoblot analysis with phospho-specific antibodies against Ser51 in eIF2 α (*Upper*). The membranes were then stripped and probed using polyclonal antiserum against yeast eIF2 α (*Lower*).

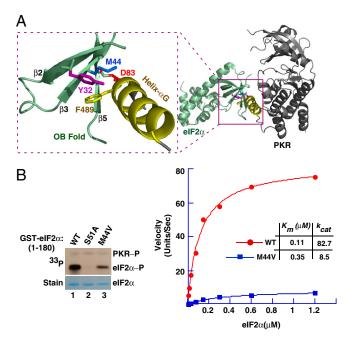

4 of 8

Fig. S5. Chemical shift changes due to L50S and I62G mutations cluster to the Ser51 loop and adjacent protein regions. (*A* and *B*) Chemical shift changes for each backbone amide group, defined as $\Delta \delta = (\Delta \delta(^{1}H)^{2} + (\Delta \delta(^{15}N)/5)^{2})^{1/2}$ plotted versus residue number for L50S (*A*) and I62G (*B*) mutants. Spheres with indicated colors and radii are employed to map chemical shift changes onto the protein structure of eIF2 α in Cand *D*. (*C* and *D*) Perturbation of chemical shifts in L50S mutant (*C*) from *A* and I62G mutant (*D*) from *B* shown on the structure of eIF2 α (1–175) (Protein Data Bank code 1Q46). Spheres are drawn at positions of backbone N atoms.

Fig. S6. Protease sensitivity of the Ser51 loop in elF2 α . (*A*) Purified yeast elF2 α^{3-175} was incubated for the indicated times with trypsin, chymotrypsin or thermolysin [1:1000 ratio (wt/wt)], as indicated. Protease reaction products were separated by SDS-PAGE and visualized by Coomassie Blue staining. The positions of intact elF2 α^{3-175} , the elF2 α C-terminal cleavage product (starting at Leu61), and the elF2 α N-terminal cleavage product are indicated. (*B*) Purified yeast elF2 α^{3-175} was incubated for 30 min with the indicated ratios (wt/wt) of trypsin or thermolysin. Protease reaction products were analyzed as described in *A*. (*C*) Purified yeast elF2 α^{3-175} was incubated for 30 min with thermolysin [1:3500 ratio (wt/wt)], and the indicated ratio (wt/wt) of purified PKR kinase domain (KD). Protease reaction products were analyzed as described in *A*.

Fig. S7. Mutation of eIF2 α OB-fold docking residue Met44 impairs Ser51 phosphorylation. (*A*) eIF2 α OB-fold domain residues Tyr32 (in strand β 2), Met44 (strand β 3), and Asp83 (strand β 5) dock on helix α G in the C-terminal lobe of the PKR kinase domain. (*B*) In vitro kinase assay. (*Left*) Recombinant GST–eIF2 α^{1-180} and its indicated derivatives were mixed with [γ^{-33} P]ATP and purified PKR. Reaction products were analyzed as described in Fig. 2*B*. (*Right*) Kinetic analysis of PKR phosphorylation of eIF2 α and eIF2 α -M44V. Recombinant GST–eIF2 α^{1-180} –M44V were phosphorylated by purified PKR, and the relative incorporation of phosphate into eIF2 α was determined using a PhosphorImager. Results are expressed in arbitrary units and are representative of at least two independent experiments; *kcat* units are sec⁻¹.

Table S1. Yeast plasmids employed in this stud
--

Plasmid	Description	Source
pC171	sc <i>LEU2 SUI2</i> (eIF2α)	(1)
p1098	sc LEU2 SUI2-S51A	(2)
pC2425	sc <i>LEU2 SUI2-L47I</i> in pC171	this study
pC2426	sc LEU2 SUI2-L471,S51A in pC171	this study
pC3120	sc LEU2 SUI2-I58G in pC171	this study
pC3121	sc LEU2 SUI2-I58G,S51A in pC171	this study
pC2428	sc LEU2 SUI2-I62G in pC171	this study
pC2431	sc LEU2 SUI2-I62G,S51A in pC171	this study
pC3122	sc LEU2 SUI2-L50S in pC171	this study
pC2429	sc LEU2 SUI2-L50S, S51A in pC171	this study
pC3123	sc LEU2 SUI2-L50P in pC171	this study
pC3124	sc LEU2 SUI2-L50P,S51A in pC171	this study
pC3125	sc LEU2 SUI2-D83A in pC171	this study
pC3126	sc LEU2 SUI2-S85A in pC171	this study
pC3127	sc LEU2 SUI2-S85D in pC171	this study
pC3128	sc LEU2 SUI2-D83A, S85A in pC171	this study
pC3129	sc <i>LEU2 SUI2-D83A,S85D</i> in pC171	this study
pC3137	sc LEU2 SUI2-L47R in pC171	this study
pC3138	sc LEU2 SUI2-L47N in pC171	this study
pC3139	sc LEU2 SUI2-L47V in pC171	this study
pC3140	sc LEU2 SUI2-L47H in pC171	this study
pC3141	sc LEU2 SUI2-L47Y in pC171	this study
pC3142	sc LEU2 SUI2-L47S in pC171	this study
pC3143	sc LEU2 SUI2-L47C in pC171	this study
pC3144	sc LEU2 SUI2-L47T in pC171	this study
pC3188	sc LEU2 SUI2-D83E in pC171	this study
pC3189	sc LEU2 SUI2-L50S,D83E in pC171	this study
pC1685	hc URA3 GAL-CYC1-PKR in pEMBLyex4	this study
p2828	hc URA3 GAL-CYC1-PKR-K296R in pEMBLyex4	this study
pC1694	hc URA3 GAL-CYC1-PKR-T487A in pEMBLyex4	this study
pC1696	hc URA3 GAL-CYC1-PKR-T487D in pEMBLyex4	this study
pC3153	hc TRP1 GAL-CYC1-PKR-T487A in p2444	this study
p2444	hc TRP1 derivative of pEMBLyex4	G. Pavitt/(3)
p722	sc URA3 GCN2	(4)
pC3179	sc URA3 GCN2-T924A	this study

1 Dey M, et al. (2005) PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (elF2B) recognize overlapping surfaces on elF2α. *Mol Cell Biol* 25:3063–3075.

2 Dever TE, et al. (1992) Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596.

3 Ung TL, Cao C, Lu J, Ozato K, Dever TE (2001) Heterologous dimerization domains functionally substitute for the double-stranded RNA binding domains of the kinase PKR. *EMBO J* 20:3728–3737.

4 Wek RC, Ramirez M, Jackson BM, Hinnebusch AG (1990) Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol Cell Biol 10:2820–2831.

Table S2	Bacterial	expression	plasmids	employe	d in [.]	this study
Table 52.	Dacteriai	expression	plasinius	employe	u iii	uns study

Plasmid	Description	Source
pC1638	GST–elF2α in pGEX-6P-1	(1)
pC1613	GST–elF2α–S51A	(1)
pC2566	GST–eIF2α–I58G	this study
pC2567	GST–eIF2α–I58G,S51A	this study
pC2568	GST–elF2α–l62G	this study
pC2569	GST–elF2α–l62G,S51A	this study
pC3177	GST–eIF2α–L50S	this study
pC3178	GST–eIF2α–L50S,S51A	this study
pC2966	GST–eIF2α–L50P	this study
pC2967	GST–eIF2α–L50P,S51A	this study
pC2978	GST–eIF2α–D83A	this study
pC2979	GST–eIF2α–S85A	this study
pC2980	GST–eIF2α–S85D	this study
pC2981	GST–eIF2α–D83A,S85A	this study
pC2982	GST–eIF2α–D83A,S85D	this study
pC3786	GST–eIF2α–L50P,S51A,S57A	this study

1 Dey M, et al. (2005) PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2α. *Mol Cell Biol* 25:3063–3075.

Nd SANC