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SI Methods 1: Details on the Population Model
Covariance Matrix. To parameterize the covariance matrix

P
(θ),

we follow Josić et al. (1) and set

Σ ijðθÞ ¼ δ ijυ iðθÞ þ
�
1− δ ij

�
ρ ijðθÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ iðθÞυ jðθÞ

q
:

Here, υ iðθÞ ¼ �r iðθÞ ¼ Tf iðθÞ and is the variance of cell i; i.e., we
assume a Fano factor of 1. ρij(θ) is the correlation coefficient
between cells i and j. We allow for both stimulus and spatial
influences on ρ, by setting

ρ ijðθÞ ¼ s i ðθÞ s iðθÞ c
�
ϕ i −ϕ j

�
:

The function si(θ) models the influence of the stimulus-
dependent component on the correlation structure, and the
function c models the spatial component and is independent of
θ. We use si(θ) = κ1 + κ2a2(θ − ϕi) with aðθÞ ¼ 1

2 ð1þ cosðθÞÞ and
c(Δϕ) = C exp(−|Δϕ|/α), where α controls the length of the
spatial decay and C the average correlation. The four possible
correlation shapes arising from this parameterization are illus-
trated in Fig. 4A. To obtain a desired mean level of correlations
�ρ in a population, we use the method described in appendix E of
Josi�c et al. (1).

Signal-to-Noise Ratio. In our population model with Poisson-like
noise the signal-to-noise ratio per neuron is proportional to the
time available for decoding, because

S
N

¼ Varθ½�riðθÞ�
Eθ½Var½ rij�ri�� ¼

T2Varθ ½ fiðθÞ�
Eθ½�riðθÞ� ¼ T2Varθ ½ fiðθÞ�

TEθ ½ fiðθÞ� ∼T:

SI Methods 2: Numerical Computation of the MDE/IMDE
We approximate the integral of Eq. 3 numerically via Monte
Carlo techniques (2, 3) by

MDEðθ; θþ ΔθÞ ¼ 1
2

ð
minðpðrjθÞ; pðrjθþ ΔθÞÞ dr

≈
1
2M

∑
M

i¼1
min

�
p
�
rðiÞjθ

�
; p
�
rðiÞjθþ Δθ

��.
p
�
rðiÞ
�
;

where r(i) are M samples, drawn from the mixture distribution
p ðrÞ ¼ 1

2 ð pðrjθÞ þ p ðrjθþ ΔθÞÞ. The factor 1=p ðrðiÞÞ corrects for
the fact that by sampling from p(r) we weigh each sample pattern
with its probability. We used M ≥ 105 and evaluated MDEθ(Δθ)
for 500 equally spaced points between 0° and 180°.
The IMDE and average neurometric functions MDEθ(Δθ)

were obtained by evaluating them at 20 different θ uniformly
spaced between ϕ1 and ϕ1 þ Δϕ=2; where Δϕ is the difference
between two preferred orientations. This is sufficient because
all codes considered here are shift symmetric with period
Δϕ ¼ 2π=N and because tuning curves are symmetric about the
preferred orientation, only half a period needs to be considered.
We verified that 20 different reference directions were sufficient
by repeating our simulations for >40 reference directions.

SI Methods 3: Numerical Estimation of the MMSE
The minimum mean squared error is achieved by the estimator
that minimizes Eq. 10. On the basis of a response r generated

from the stimulus-conditional distribution for stimulus θ, it is
given by

bθ ðrÞ ¼ arg min
ð2π
0

� bθ −: ψ
�2
pðψjrÞ dψ;

where

pðψjrÞ ¼ pðrjψÞ pðψÞ
pðrÞ

is the posterior over stimuli given the response and α −: β = min
(|α − β|, |2π − α + β|) is the distance measured along the circle
(4). The prior is uniform such that pðψÞ ¼ 1=2π:We evaluate the
above equations for L discrete, regularly spaced ψi ∈ [0, 2π) and
replace the integrals by sums. We obtain

p ðrÞ ≈ 1
2π

∑
L

i¼1
p ðrjψiÞΔψð2π

0

�bθ −: ψ
�2
pðψjrÞ dψ ≈

1
2π

∑
L

i¼1

�bθ −: ψi

�2
pðrjψiÞ=pðrÞΔψ:

Simplifying we obtain

bθðrÞ≈ arg min
θj

∑L
i¼1

�
θj −: ψi

�2 pðrjψiÞ
∑L

i¼1 pðrjψiÞ
;

which is solved by using again L discrete, uniformly spaced θj as
candidates. This discretization limits the accuracy with which the
MMSE can be estimated. The limited accuracy is a problem in
particular for very good estimators, for whichLmust be very large.
Here, we chose L= 500 and verified that theMMSE curves at the
highest SNR did not change when L was substantially increased.
Using this equation we can compute the MMSE as

MMSE ¼ Eθ;r

h�
θ −: bθðrÞ�2i:

Similar procedures have been used in refs. 5 and 6. In some
scenarios, approximation procedures like those presented in ref.
6 can be helpful.

SI Text
In this section, we formally show that for Fisher-optimal codes (i)
a nonzero pedestal error exists in the large N limit and (ii) the
saturation point Δθ s goes to zero as the population size N in-
creases for fixed T. Finally, we derive an approximation to the
pedestal error to show that it depends on the available decoding
time alone.

Preliminary Remarks.We first note that in Fisher-optimal codes the
tuning width is inversely proportional to N (Fig. 3A), such that

w ¼ c
N

for some constant c. Only a few cells are active for any given
stimulus and this number does not depend on the population size
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N (Fig. 3G). The tuning curve spacing can be expressed in terms
of the population size as

Δϕ ¼ 2π
N
:

Therefore, we can write w in terms of Δϕ as

w ¼ cΔϕ
2π

;

which holds for any N. Also, ϕi = iΔϕ. We further note that the
following relationship holds:

ei ðθÞ≡
�
1
2
þ 1
2
cosðθ−ϕiÞ

�k

≤ exp
�
−
k
4
ðθ−ϕiÞ2

�
≡beiðθÞ:

If the exponent k is sufficiently large, eiðθÞ ≈ beiðθÞ: Thus, the
tuning function in our model can be replaced by

fiðθÞ ¼ λ1 þ λ2 ei ðθÞ ≈ λ1 þ λ2bei ðθÞ;
which is of Gaussian form. Therefore, we can rewrite the tuning
functions as follows:

fiðθÞ ≈ g
�
θ−ϕi

w

�
¼ h

�
θ−ϕi

Δϕ

�
¼ h

�
θ
Δϕ

− i
�
:

In this equation, i is the neuron index and the constants in w are
absorbed into the function h. Note that the tuning functions g
and h are fixed templates for which only the domain changes
with N (Fig. 3 G and H). Whereas fi is defined on [−π, π], h is
defined on ½− ððN − 1Þ=2Þ þ 1; ðN − 1Þ=2�; for even N. It follows
that the Fisher-optimal tuning functions drawn in units of Δϕ
(instead of θ) are constant for different N (Fig. 3 G and H); the
activity of a neuron depends only on ϕi=Δϕ; that is, how many
units of Δϕ its preferred orientation is away from the stimulus,
independent of N.

Existence of the Pedestal Error. We first show that there is a lower
bound on the minimum discrimination error between any pair of
stimuli, which is nonzero in the large N limit. To this end, we
define an auxiliary population of neurons with additive Gaussian
noise with variance λ1, the parameter that determines the
baseline firing rate of our tuning curves. The firing patterns of
this population are distributed as

qðrjθÞ ¼ Nð�r;Tλ1INÞ;

where IN is the identity matrix of dimension N. The minimum
discrimination error of this population provides a lower bound
on that of the populations with Poisson-like noise used in the
main text, i.e.,

MDE pðθ; θþ ΔθÞ ≥ MDE qðθ; θþ ΔθÞ:

Here, the subscripts p and q indicate that the MDE is calculated
with respect to the pattern distributions p and q, respectively. We
can express the right-hand side of this equation as

MDE qðθ; θþ ΔθÞ ¼ 1−Ψðd′=2Þ;

where d′ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔμTΣ− 1Δμ

p
: Equality holds because in the case of

additive noise the linear discrimination error is equal to the
MDE (SI Discussion). We now provide an upper bound for d′:

d′2 ¼ ∑
i

T2ð fiðθÞ− fiðθþ ΔθÞÞ2
Tλ1

¼ Tλ22
λ1

∑
i
ðeiðθÞ− eiðθþ ΔθÞÞ2

≤
Tλ22
λ1

∑
i
eiðθÞ2þ∑

i
eiðθþ ΔθÞ2

¼ 2Tλ22
λ1

∑
i
eiðθÞ2:

Here we use ei as defined above and the neuron index i ranges
from − ððN − 1Þ=2Þ þ 1 to ðN − 1Þ=2. We can now use the
upper bound on e(θ) and use a Gaussian tuning functionbeðθÞ ¼ expð− ðθ−ϕiÞ2=w2Þ instead. Now without loss of gener-
ality we assume θ = ϕ0 and substitute w, ϕi, and Δϕ from above.
We obtain

beðϕ0Þ ¼ exp
�
−
�
2π
c
· i
�2�

;

where the i indicates the neuron index, not the imaginary unit.
Inserting into the above equation yields

d′2 ≤
2Tλ22
λ1

∑
i

beiðθÞ2 ¼ 2Tλ22
λ1

∑
i
exp
�
− 2
�
2π
c
· i
�2�

¼ 2Tλ22
λ1

∑
i
exp

 
−
1
2

i2�
c
4π

�2
!
≤

Tλ22
λ1

�
cffiffiffiffiffi
8π

p þ 1
�
:

To arrive at the last inequality note thatð∞
−∞

1ffiffiffiffiffiffiffiffi
2πσ

p exp
�
−

i2

2σ2

�
di ¼ 1

is the area under the density function of a Gaussian with SD σ. We
can approximate the integral by the lower Riemann sum, i.e., by
rectangles [i − 1, i] with height expð− ði2=2σ2ÞÞ for positive i and
[i, i + 1] with height expð− ði2=2σ2ÞÞ for negative i, respectively.
Thus, we have

∑
i≠0

exp
�
−

i2

2σ2

�
≤

ffiffiffiffiffiffiffiffi
2πσ

p
:

Substituting σ = c/4π and including i = 0, we obtain the above
inequality.
Thus, d′ is bounded from above independent of N. Therefore,

MDEpðθ; θþ ΔθÞ ≥ MDEqðθ; θþ ΔθÞ
¼ 1−Ψðd′=2Þ

¼ 1−Ψ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tλ22
λ1

�
cffiffiffiffiffi
8π

p þ 1
�s
=2

#
> 0 [S1]

independent of N and in particular also in the limit N → ∞. This
result shows that there is a nonvanishing pedestal error P for all
N and for finite T.

Convergence of Saturation Point ΔθS to Zero.Next we show that the
saturation point ΔθS converges to zero for N → ∞. We define
Δθ* as
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Δθ� ¼ minfΔθ : MDEðΔθÞ−P≤ ε=2g:

We approximate the MDE of the whole population with N
neurons by considering only two subsets of 2Mε + 1 neurons
each that are most strongly activated by one of the two stimuli:

Iε ¼
	
i :

θ
Δϕ

− i ≤ Mε or
θþ Δθ
Δϕ

− i ≤ Mε



:

����������������
Here Mε is chosen such that

MDEIε ðΔθ�Þ ≤ MDEðΔθ�Þ þ ε=2:

Here, MDEIε is the MDE achieved by the subpopulation with
neurons in the set Iε, for which holds

P ≤ MDEðΔθÞ ≤ MDEIεðΔθÞ:

Because the tuning curves are identical in units of Δϕ for dif-
ferent N, Mε does not change with N and therefore Δθ* is also
a constant in units of Δϕ:

Δθ� ¼ cΔϕ ∼
1
N
:

Finally, we define ΔθS as

ΔθS ¼ minfΔθ : MDEðΔθÞ−P ≤ εg

and note that ΔθS ≤ Δθ* and therefore ΔθS → 0 as N → ∞.
Consequently, the area of the initial region will shrink to zero,
too, as

AIR ¼
ðΔθS
0

½MDEðΔθÞ−P�dΔθ:

In particular, the neurometric functions for different N at fixed T
are identical, when written as a function of Δϕ (Fig. S4). Al-
though they show a different pedestal error for different T, they
reach their pedestal error at constant Δϕ for all N and T con-
sidered (∼2Δϕ).

Approximation of the Pedestal Error P. Finally, we derive an ana-
lytically tractable approximation of the pedestal error. Looking
only at 2 × 2Mε + 1 neurons in a Fisher-optimal model pop-
ulation, we can approximate the pedestal error with arbitrary
precision. We find for our model that Mε ∼ 1 such that only six
cells suffice to achieve the same error as the entire population.
We adopt the following notation: �r0 is the activity by the maxi-
mally excited neuron and �r1 and �r − 1 are the activities of the two
neurons to the left and to the right. For the time being, we omit
the dependence on θ and assume we place the stimulus at the
peak of neuron 0. This assumption leads to the two average
response vectors for the two stimuli θ and θ + π,

μ1 ¼ ð�r − 1;�r0;�r1;�rmin;�rmin;�rminÞT

μ2 ¼ ð�rmin;�rmin;�rmin;�r − 1;�r0;�r1ÞT ;

and the respective stimulus conditional covariance matrices Σ1 =
diag(μ1) and Σ2 = diag(μ2). To derive our approximation of the
pedestal error, we calculate d′ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔμTΣ− 1Δμ

p
, taking advantage

of the small subpopulation that needs to be considered, where
Σ ¼ 1

2ðΣ1 þ Σ2Þ: We obtain

Δμ ¼ ð�r − 1 −�rmin; . . . ;�rmin −�r1ÞT

Σ− 1 ¼ diag
�

2
�r − 1 þ �rmin

; . . . ;
2

�rmin þ�r1

�
:

This yields

ΔμTΣ− 1Δμ ¼ 4 ∑
1

i¼− 1

ð�ri −�rminÞ2
�ri þ�rmin

:

The error of the optimal linear classifier (7) in this situation is

bPθ ¼ 1−Ψ

24 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
1

i¼− 1

ð�ri −�rminÞ2
�ri þ �rmin

s 35;
whereΨ is the cumulative normal distribution function. This equa-
tion provides a good approximation of the pedestal error of the
neurometric function of Fisher-optimal population codes (Fig.
3F). We can see the dependence on time by rewriting the above
expression, bPθ ¼ 1−Ψ

h
F
ffiffiffiffi
T

p i
;

where F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑1

i¼− 1ððfi − fminÞ2=ðfi þ fminÞÞ
q

depends only on the
tuning curves of the individual neurons. In particular, f±1 are
constant with growing N (as shown above), because we can re-
write the tuning function as a function of Δϕ. The above expres-
sion depends on the choice of the reference direction θ, so we
average again over θ and obtain

bP ¼h1−Ψ½ Fθ
ffiffiffiffi
T

p
�iθ; [S2]

where the subscript θ indicates the dependence of F on θ in-
herited from the tuning functions.

SI Discussion
Most other studies that investigated population codes in the dis-
crimination framework measured the minimal linear discrimina-
tion error (LDE), such as refs. 8–11 as well as part 1 of ref. 7. Few
others such as ref. 12 and part 2 of ref. 7 also consider nonlinear
approximations of the minimal discrimination error. However,
none of these studies computed the minimal discrimination error.

Linear Approaches. The studies by Johnson (8), Snippe and
Koenderink (9, 10), and Averbeck and Lee (7) used the dis-
criminability index d′ from signal detection theory:

d′ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔμT Σ− 1Δμ

q
:

Here, Δμ ¼ �rðθÞ−�rðθþ ΔθÞ is the difference in average firing
rate profiles across the population and Σ is the noise covariance
matrix. The first two studies (8, 9) evaluated this equation for
constant Σ and in the limit Δθ → 0. Because Δμ≈�r′ðθÞΔθ is an
approximation of the derivative of the population firing rate
profile for small Δθ,

d′ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔμTΣ− 1Δμ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r′ðθÞTΔθΣ− 1�r′ðθÞΔθ

q
¼ Δθ

ffiffiffiffiffiffiffiffiffiffi
Jmean

p
so that the two studies effectively study the linear part of the
Gaussian Fisher information. Similar approaches have also been
used by refs. 9, 13, and 14).
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Averbeck and Lee (7) used d′ also for finite Δθ with
Σ ¼ 1

2ðΣθ þ ΣθþΔθÞ. They then proceeded to compute the mini-
mum linear discrimination error

LDE ¼ 1−Ψðd′=2Þ;

where Ψ is the standard normal cumulative distribution function.
It might not be immediately obvious why this computation really
yields the minimal linear discrimination error. To see why this is
the case, observe that for two normal distributions with means
μ1, μ2 and covariance matrices Σ1, Σ2 and equal prior probabil-
ities, Fisher’s linear discriminant is the optimal linear classifier
(15). Its weight vector is given by

w ¼ Σ− 1ðμ1 − μ2Þ;

where Σ = Σ1 + Σ2. The discriminability index d′ along w with

�μi ¼ wTμi
�σ2i ¼ wTΣiw

is

d′ ¼ �μ1 − �μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ21 þ �σ22

q ¼ wTΔμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTðΣ1 þ Σ2Þw

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔμTΣ− 1Δμ

q
;

which is the same as the above expression. For one-dimensional
data, the error can be computed from d′ with the formula used
above (see also ref. 7).
Whereas the LDE is equal to the MDE for additive Gaussian

noise models, i.e., when r ¼ �rðθÞ þ ε with ε∼Nð0;ΣÞ; it does not
capture the coding properties of a population code in the general
case with stimulus-dependent covariance matrices, e.g., for
a Poisson-like Gaussian noise model or for stimulus-dependent
correlation structures.

Nonlinear Approaches. As a second measure of coding quality,
Averbeck and Lee (7) consider the Bhattacharyya distance (DB).
It is defined as

DBðΔθÞ ¼ − log
ð
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ðr j θÞ · p ðr j θþ ΔθÞ dr

p
;

which is, in the general case, as difficult to compute as the MDE.
For the Gaussian case it simplifies to

DBðΔθÞ ¼ 1
4
ΔμTðΣθ þ ΣθþΔθÞ− 1Δμ

þ 1
2
log

jΣθ þ ΣθþΔθj
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΣθ þ ΣθþΔθj

p :

Previously, Kang et al. (12) used the Chernoff distance (DC) as
a measure of coding accuracy, which is defined as

DαðΔθÞ ¼ − log
ð
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pαðr j θÞp1− αðr j θþ ΔθÞ dr

q
DcðΔθÞ ¼ max

α
DαðΔθÞ [S4]

with α ∈ (0, 1). Interestingly, DB is a special case of DC obtained
by setting α ¼ 1

2: To compute the Chernoff distance, Kang et al.
exploit the fact that they assume a Gaussian noise model and
a population with independent neurons and show that for this
case, the optimal α = 1

2, so that they effectively use DB instead of
DC in their study.
In the Gaussian case, a simpler formula can be provided for

computing Dα (16):

DαðΔθÞ ¼ αð1− αÞ
2

ΔμTðαΣθ þ ð1− αÞΣθþΔθÞ− 1Δμ

þ 1
2
log

jαΣθ þ ð1− αÞΣθþΔθj
jΣθjαjΣθþΔθj1− α :

The interest in DB and DC originates in the fact that both provide
an upper bound on the MDE, the Chernoff bound (17, 16):

MDE ðΔθÞ ≤ exp ð−DCðΔθÞÞ: [S5]

The identical bound for DB is in general less tight than Eq. S5,
as DC ≥ DB with equality if and only if the optimal α ¼ 1

2 in Eq.
S4. If both class-conditional distributions are Gaussians with
Σθ ¼ ΣθþΔθ; the true optimum can be shown to lie at α ¼ 1

2 (16).
For arbitrary population codes and noise distributions, the ques-
tion of whether the Chernoff bound is tight is not straightforward
to answer. Kang et al. state that its tightness depends on the
population size, the integration time, and the shape of the tuning
curves (12). In summary, DB and DC provide useful upper bounds
on the MDE but cannot be used to measure the MDE directly.
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Fig. S1. Tuning curves with width optimized for various criteria (black). For better visualization of the population structure, two additional tuning curves are
shown in light gray. (A and B) MASE-optimal tuning curve for 10 and 1,000 ms, respectively. (C and D) MMSE-optimal tuning curve for 10 and 1,000 ms,
respectively. (E and F) IMDE-optimal tuning curve for 10 and 1,000 ms, respectively.

Fig. S2. Fig. 2 shows that the optimal tuning width with regard to the MASE is almost independent of time, but varies slightly. The reason for this result is that
Fisher Information has two parts, Jmean and Jcov, which have different time dependencies. For an independent population, we have

Jmean ¼ �r′Σ− 1 �r′ ¼
XN
i¼1

�r′2
�ri

∼ T

Jcov ¼ 1
2
Tr
�
Σ′Σ− 1Σ′Σ− 1 ¼XN

i¼1

�r′2

�r2i
≁ T :

Thus Jmean is proportional to time and its optimum is fixed for varying T. Jcov is constant and does not depend on time. Therefore, the relative importance of the
two terms changes with time: Whereas for small T Jmean and Jcov are roughly on the same order of magnitude, Jmean dominates for large T. When we plot the
two extreme cases, 〈1=Jmean〉 and 〈1=Jcov〉, corresponding to T → ∞ and T → 0, respectively, we find that they lead to slightly different optimal tuning
widths. The graph shows 〈1=Jmean〉 (solid line) and 〈1=Jcov〉 (dashed line). Note that this behavior is present only for the Poisson-like Gaussian but not for
the discrete Poisson noise model. The Fisher information of an independent Poisson distribution is

J ¼
XN
i¼1

�r′2i
�ri
;

which is equal to the first term of Fisher Information in the Gaussian case, Jmean. For the Poisson noise model, Fisher Information and therefore the MASE lead to
a constant optimum completely independent of time (Fig. S3).
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Fig. S3. (A and B) Replication of the results shown in Fig. 2 with Poisson noise (discrete spike counts). We set

pðrjθÞ ¼ ∏
i

�r rii
expð�riÞ

ri !
:

As in Fig. 2, we compute the MASE (A) and the IMDE (B) as a function of the tuning width for short and long time intervals (T = 10, 100, 500, and 1,000 ms; light
gray to black). The results are very similar to the Gaussian case: Fisher Information leads to a narrow tuning curve independent of time and the discrimination
error to broad tuning functions for short time intervals and narrow ones for long time intervals. (C–E) IMDE for a population of 100 independent neurons with
Poisson-like noise and variable Fano factor (Fano factor = 0.25, 1, and 4) as a function of tuning width at two different integration times (T = 10 and 500 ms;
light gray and dark gray, respectively). We used M = 3 × 104 samples for the numerical evaluation. (F–H) Same as in C–E, but MASE of the same population.

Fig. S4. Neurometric functions with rescaled x axis of populations (n = 10, . . . ,190) with Fisher-optimal tuning functions for different integration times
(T = 10–600 ms; light gray to dark gray) as a function of Δθ/Δϕ. The rescaled neurometric functions for populations of different size and identical integration
time are identical. Note the log-scale on the y axis. All neurometric functions level off at Δθ/Δϕ ∼ 2, independent of the population size.
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Fig. S5. Dependence of the critical Δθc on time. Starting at Δθc, populations with uniform correlations outperform populations with stimulus-dependent
correlations, on the available decoding time T. The value of Δθc was extracted from the smoothed, relative versions of the neurometric functions.

Fig. S6. Neurometric functions of two neural populations with independent noise and Fisher-optimal tuning functions (population 1, n = 70, T = 47 ms;
population 2, n = 50, T = 130 ms). The Fisher information of both populations is almost equal (1,000 vs. 1,016) but the pedestal errors are quite different. Note
that in this case Fisher information and neurometric functions were calculated for a stimulus located at the peak of one of the tuning functions and not
averaged over stimuli.
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