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SI Text
Inference of the Persistence-Time Distribution from a Finite Observa-
tional Period. In what follows we provide a complete derivation
of the mathematical treatment summarized in Materials and
Methods of the main text.

When dealing with observational data, the effect of the finite-
ness of the observed time window on the measured species per-
sistence times must be properly taken into account. In this section
we show the analytical derivation of the distribution of two vari-
ables that can actually be measured from empirical data: (i) the
persistence times τ0 of species that emerge and go locally extinct
within the observed time window ΔTw and (ii) the variable τ00 that
comprises the persistence times τ0 and all the portions of species
persistence times that are partially seen inside the observational
time window but start or/and end outside (Fig. S1). By matching
analytical and observational distributions for pτ0 ðtÞ and pτ00 ðtÞ, it
is possible to infer the persistence-time distribution pτðtÞ. In
the theoretical framework described in the main text, the prob-
ability ν of having a diversification event in a time step is constant;
thus species emergence in the system due to migration or specia-
tion is a uniform point Poisson process with rate λ ¼ νN, where N
is total number of individuals in the system and λ has the dimen-
sion of the inverse of a generation time. We term t0 the emer-
gence time of a species in the system, and T0 and Tf ¼ T0þ
ΔTw the beginning and the end of the observational time window,
respectively. A species emerged at time t0 will be continuously
present in a geographic region for its persistence time τ until
its local extinction at time t0 þ τ. We first analyze the distribution
of τ00, the most complex case; the distribution of τ0 will follow
easily.

The variable τ00 can be expressed as function of the random
variables τ and t0, which are probabilistically characterized. We
can distinguish four different cases (Fig. S1):

1. the species emerges and goes locally extinct within the time
window;

2. the species emerges during the observations and it is still
present at the end of the time window;

3. the species emerges before the beginning of the observations
and goes locally extinct within the time window;

4. the species is always present for all the duration of the obser-
vations;

or, mathematically,

τ00 ¼

8>><
>>:

τ; if T0 ≤ t0 ≤ Tf and t0 þ τ ≤ Tf

Tf − t0; if T0 ≤ t0 ≤ Tf and t0 þ τ > Tf

t0 þ τ − T0; if 0 < t0 < T0 and T0 ≤ t0 þ τ ≤ Tf

Tf − T0; if 0 < t0 < T0 and t0 þ τ > T

:

We express the probability of observing τ00 conditional on a
persistence time of duration τ as

pτ00 ðtjτÞ ¼
1

N

�
hδðτ − tÞΘðt0 − T0ÞΘðTf − ðt0 þ τÞÞΘðTf − T0 − τÞi

þ hδðTf − t0 − tÞΘðt0 − T0ÞΘðTf − t0ÞΘðt0 − ðTf − τÞÞi
þ hδðt0 þ τ − T0 − tÞΘðt0ÞΘðTf − t0 − τÞΘðT0 − t0Þ
× Θðt0 − T0 þ τÞi þ hδðTf − T0 − tÞΘðt0ÞΘðT0 − t0Þ
× Θðt0 − ðTf þ τÞÞΘðτ − ðTf þ T0ÞÞi

�
; [S1]

where the operator h·i is the ensemble average with respect to
the random variable t0, δðxÞ and ΘðxÞ are the delta of Dirac
distribution and the Heaviside function, respectively. N is the
normalization. Solving the ensemble averages, the previous
equation reads

pτ00 ðtjτÞ ¼
1

N

�
δðt − τÞ

Z
Tf−τ

T0

ΘðTf − T0 − τÞdt0

þ ΘðTf − T0 − tÞΘðτ − tÞ
þ ΘðTf − T0 − tÞΘðT0 þ t − τÞΘðτ − tÞ
þ δðt − ðTf − T0ÞÞmin½T0;T0 − ðTf − τÞ�

× Θðτ − ðTf − T0ÞÞ
�
: [S2]

Marginalizing with respect to τ we obtain the probability dis-
tribution of τ00:

pτ00 ðtÞ ¼
Z

∞

0

pτ00 ðtjτÞpτðτÞdτ: [S3]

Eq. S2 combined with Eq. S3 yields

pτ00 ðtÞ ¼
1

N

�
ðTf − T0 − tÞpτðtÞΘðTf − T0 − tÞ

þ ΘðTf − T0 − tÞ
Z

∞

t>0
pτðτÞdτ

þ ΘðTf − T0 − tÞ
Z

T0þt

t>0
pτðτÞdτ

þ δðt − ðTf − T0ÞÞ
Z

∞

Tf−T0

min½T0;T0 − ðTf − τÞ�pτðτÞdτ
�
:

[S4]

The last term of Eq. S4 gives an atom probability in t ¼ ΔTw ¼
Tf − T0 corresponding to the fraction of species that are always
present during the observational window.

Recalling Eq. S1 and Eq. 3, the normalization constant N
reads

N ¼
Z

∞

0

ðhΘðt0 − T0ÞΘðTf − ðt0 þ τÞÞΘðTf − T0 − τÞi

þ hΘðt0 − T0ÞΘðt0 − ðTf − τÞÞΘðTf − t0Þi
þ hΘðt0ÞΘðTf − ðt0 þ τÞÞΘðT0 − t0ÞΘðt0 − ðT0 − τÞÞi
þ hΘðt0ÞΘðT0 − t0ÞΘðt0 − ðTf − τÞÞiÞpτðτÞdτ; [S5]

which simplifies to

N ¼
Z

Tf−T0

0

ðTf − T0 − τÞpτðτÞdτ

þ
Z

∞

0

min½Tf − T0;τ�pðτÞdτ

þ
Z

∞

0

ðmin½T0;Tf − τ� −max½0;T0 − τ�ÞpðτÞdτ

þ
Z

∞

Tf−T0

min½T0;T0 − Tf þ τÞpτðτÞdτ: [S6]

Bertuzzo et al. www.pnas.org/cgi/doi/10.1073/pnas.1017274108 1 of 6

http://www.pnas.org/cgi/doi/10.1073/pnas.1017274108


When comparing analytical and observational distributions,
we assume that the system is at stationarity and unaffected by
initial conditions; i.e., T0 is far from the beginning of the process.
Mathematically this is obtained taking the limit T0;Tf → þ∞ with
Tf − T0 ¼ ΔTw in Eq. S4, which finally takes the form

pτ00 ðtÞ ¼
1

N

�
ðΔTw − tÞpτðtÞΘðΔTw − tÞ

þ ΘðΔTw − tÞ
Z

∞

t>0
pτðτÞdτ

þ ΘðΔTw − tÞ
Z

∞

t>0
pτðτÞdτ

þ δðt − ΔTwÞ
Z

∞

ΔTw

ðτ − ΔTwÞpτðτÞdτ
�
; [S7]

where N simplifies to

N ¼ ΔTw þ hτi − 2ΔTwPτðΔTwÞ þ 2

�Z
ΔTw

0

ðPτðtÞ − tpτðtÞÞdt
�
;

[S8]

with PτðtÞ ¼ ∫ þ∞
t pτðτÞdτ being the exceedance cumulative distri-

bution of the persistence-time probability density function.
The variable τ0 comprises only the first of the four cases listed

in Eq. S1. Thus the probability distribution pτ0 ðtÞ follows directly
from the first term of Eq. S7:

pτ0 ðtÞ ¼
1

N0 ðΔTw − tÞpτðtÞΘðΔTw − tÞ; [S9]

where the normalization constant N0 is equal to

N0 ¼
Z

ΔTw

0

ðΔTw − τÞpτðτÞdτ; [S10]

which completes the derivation.

Imperfect Detection. While studying animal communities on the
basis of presence/absence (or count) data, imperfect detection
of species is a source of concern, because animal species are rou-
tinely sampled with a detection probability <1. This represents a
well-known issue for the breeding bird dataset under analysis, as
convincingly shown in the literature (1–7). The aggregation pro-
cedure of breeding bird data from route to cell level explained in
the main text reduces the probability of imperfect detection. We
term pr the route-level detection probability, i.e., the probability
that a species is recorded given that it is present in the surveyed
route. The probability of a pseudoabsence is therefore one minus
the detection probability. Following ref. 7, the detection probabil-
ity at cell level pc can be expressed as pc ¼ 1 − ð1 − prÞn, where n
is the number of routes comprised in the cell where the species is
present. Therefore, the probability of detection at cell scale
increases rapidly with n. Note that in our finest scale of analysis
(A ¼ 10;000 km2), cells comprise an average of six routes.

We have explicitly tested the sensitivity of our results to imper-
fect detection. Starting from the data at route level, we have
added, for every year and every route, species randomly chosen
among the assemblage of species observed in that route in the
whole observational window (41 y). The number of species added
is chosen so that the resulting route-level detection probability
has a constant value pr . The data so modified have been then
aggregated at cell level and analyzed to derive the persistence-
time distribution. Given the randomness in the choice of the
added species, the operation has been repeated 1,000 times.
An analysis on species imperfect detection in the Breeding Bird
Survey dataset (7) has estimated an average route-level detection
probability of about 0.8 for rare species and pr ≃ 0.9 for more
common species. We have run our analysis with the conservative

value pr ¼ 0.8 for all species. Fig. S2 shows the comparison
between the probability distribution of the variables τ0 and τ00
derived from the original breeding bird data and those derived
after the addition of possibly undetected species as explained
above. Fig. S2 refers to the finest scale of analysis, the more
affected by imperfect detections. As expected, even with a low
route-level detection probability (pr ¼ 0.8) imperfect detections
have no significant impact on the resulting persistence-time dis-
tribution.

We also note that the problem of imperfect detection is far less
relevant for the herbaceous plant dataset, given the sampling
methodology and the small spatial scale of analysis (8).

Persistence-Time Distributions for Breeding Bird Passeriformes Spe-
cies.We characterize the persistence-time distribution of a subset
of the breeding bird data. Specifically we analyze the passeri-
formes species, which comprise 282 out of the 644 species
included in the dataset. Remarkably, also the persistence times
of the passeriformes species prove to be best fitted by a power-
law distribution with an exponent (α ¼ 1.76� 0.05, Fig. S3) close
to the scaling exponent of the whole dataset (α ¼ 1.83� 0.02).

Persistence-Time Distributions in a Individual-Based Neutral Model:
The Role of the Dispersal Range. We have investigated the effects
of dispersal ranges wider than nearest neighbors on persis-
tence-time distributions. To that end, we have implemented
the individual-based neutral (9, 10) model with uniform-dispersal
with varying radii r. We have simulated the model in regular
lattices in d spatial dimensions comprising N sites each of them
occupied by one individual. To avoid edge effects, periodic
boundary conditions have been prescribed. The model assumes
neutral dynamics; therefore, all the basic ecological processes
reproduced in the model (birth, death, dispersal, colonization,
and diversification) are equivalent for all the individuals of all
species. The system is assumed to be always saturated; i.e., no
available resources or sites are left unexploited. At each time
step, a randomly selected individual dies and the resources are
freed up and available for colonization by another individual.
With probability ν, the diversification rate, the empty site is
colonized by individual of a species not currently present in
the system. The diversification is a rate per birth that accounts
for both speciation and immigration from surroundings commu-
nities. With the residual probability 1 − ν the empty site is occu-
pied by on offspring of an individual randomly sampled among all
the sites that are less distant than r from the empty site, where r is
measured in units of lattice spacing. For r ¼ 1 we reduce to the
nearest-neighbor dispersal case (von Neumann neighborhood).
After the system has reached a statistically steady state, we start
measuring the persistence times of 105 species, tracking their
abundances from emergence to extinction.

Fig. S4 shows the persistence-time exceedance probability dis-
tribution for different dispersal radii. When the range of dispersal
is small compared to the typical size of species’ cluster, the per-
sistence-time distributions tend to have, after a transient regime,
the same scaling found in the nearest-neighbor case. As expected,
as the radius of dispersal increases, persistence-time distributions
approach the scaling of the global dispersal.

Persistence-Time Distributions in a Individual-Based Competition-
Survival Trade-Off Model. We have investigated the resulting per-
sistence-time distributions once the neutral assumption is relaxed
and differences among species are considered. In this context, we
have implemented on regular lattices a competition-survival
trade-off model (11–13) where species have different mortality
rate μ. We assume a trade-off between mortality and competitive
advantage so that species with higher mortality rates have a high-
er probability of outcompeting species with lower mortality rate
in the engagement for the colonization of an empty site. Oper-
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ationally, each species s is labeled by its mortality rate μs. At every
time step an individual, randomly selected among all the indivi-
duals in the system, dies with a probability equal to the mortality
rate of the species it belongs to. If a death occurs the empty site
is colonized by one individual of a species not currently present
in the system with probability ν, the diversification rate. The
mortality rate of the new species is sampled from a uniform
distribution between 0 and 1. With the remaining probability
1 − ν, the empty site is colonized by an offspring of an individual
chosen among the nearest neighbors with probability propor-
tional to their mortality rate.

Fig. S5 shows the comparison between persistence-time distri-
butions emerging from the neutral and the competition-survival
trade-off model implemented in a two-dimensional lattice.
Also in the trade-off model the persistence-time distribution,
after a transient regime, exhibits a power-law behavior with an
exponent (α ¼ 1.80� 0.03) close to that found under neutrality
(α ¼ 1.82� 0.01). Noticing that persistence time in the trade-off
model has a larger mean value hτi and recalling that the mean
number of species S in the system at a certain time is
S ¼ νNhτi (14), we conclude that trade-off mechanisms can facil-
itate the coexistence of species, a result already suggested in the
literature (10, 11).

Scaling Relations. In this section we show the derivation of the
scaling relations used in the main text to obtain the specie area
relationship. Assuming a persistence-time probability density
function of the form

pτðτÞ ¼ Aθðτ − tminÞτ−αe−ντ;
where ν is the diversification rate and A ¼ να−1∕Γð1 − α;νtminÞ is
the normalization constant, we obtain that the mean persistence
time can be expressed by

hτi ¼
Rþ∞
tmin→0 τ

1−αe−ντdτRþ∞
tmin→0 τ

−αe−ντdτ

≈
να−2

t1−αmin þ να−1
¼

8><
>:

1
ν ; if tminν ≫ 1;

να−2

t1−αmin
; iftminν ≪ 1.

In our case ν ≪ 1, and thus we obtain

hτi ∝ να−2;

which is a scaling relation between the mean persistence time and
the diversification rate.

It is interesting to note that the relation S ¼ Nνhτi used in the
main text to derive the species-area relationship can be alterna-
tively derived by considering the species population dynamics.
In fact, the mean number of species S at a certain time can be
expressed as

SðtÞ ¼ N
hnðtÞi ; [S11]

where N is the total number of individuals in the ecosystem and
hni is the averaged abundance of the species observed at a certain

time t. We term pðsÞn ðtÞ the probability for the sth species of having
an abundance n at time t. Different species have different random
emergence times t0s that follow a Poisson distribution with

frequency λ. Therefore pðsÞn ðtÞ can be expressed as

pðsÞn ðtÞ ¼ p�nðt − t0sÞ;

where p�nðtÞ is the probability for a single species to have abun-
dance n at time t after its emergence. Under the neutral assump-
tion p�nðtÞ is species invariant. The mean population size at time t
can be calculated as

hnðtÞi ¼
*
∑

D

s¼1 ∑
þ∞
n¼0

p�nðt − t0sÞn

∑
D

s¼1 ∑
þ∞
n¼1

p�nðt − t0sÞ

+

∼

D
∑

D

s¼1 ∑
þ∞
n¼0

p�nðt − t0sÞn
E

D
∑

D

s¼1 ∑
þ∞
n¼1

p�nðt − t0sÞ
E ; [S12]

where DðtÞ is the number of diversification events occurred
until time t. Explicating the ensemble average ðh·i ¼
∑D

ðλtÞD
D!

e−λt∫ t
0

Q
D
s¼1

dt0s
t ·Þ, using the fact that all the t0s are Poisson

distributed with the same frequency λ and the Taylor expansion
∑D≥1ðλtÞD−1∕ðD − 1Þ! ¼ eλt, Eq. S12 simplifies to

hnðtÞi ¼

R
t
0 dt

0
∑
n

np�nðt0ÞR
t
0 dt

0
∑
n≥1

p�nðt0Þ
: [S13]

From the definition of p�nðtÞ it follows that

∑
n

np�nðt0Þ ¼ hn�it

is the mean population of a species after a time t from its emer-
gence. It is easy to show (15) that the term hn�it obeys to the
deterministic equation dhn�it∕dt ¼ −νhn�it, whose solution is
hn�it ¼ hn�i0e−νt. Thus the numerator of Eq. S13 is simply
∫ t
0hn�i0e−νt

0
dt0 ¼ hn�i0ð1 − e−νtÞ∕ν. We now observe that

∑n≥1p
�
nðt0Þ is the probability that the species has more than

one individual at time t; i.e., the cumulative distribution of the
persistence-time probability density function PτðtÞ ¼ ∑n≥1p

�
nðtÞ ¼

∫ þ∞
t pτðτÞdτ. Therefore the denominator of Eq. S13 can be writ-

ten as ∫ t
0dt

0∑n≥1p
�
nðt0Þ ¼ ∫ t

0dt
0∫ þ∞

t0 pτðτÞdτ. Simplifying Eq. S13
and taking its stationary limit, we obtain

hnit → þ∞ ¼ 1

νhτi ; [S14]

where we have set hn�i0 ¼ 1. Finally, substituting Eq. S14 into
Eq. S11 we alternatively obtain the relation SðtÞ ¼ Nνhτi used
in the main text.
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Fig. S1. Schematic representation of the variables that can be measured from empirical data over a time window ΔTw : τ0 (persistence times that start and end
inside the observational window) and τ00 (which comprises the persistence times τ0 and all the portions of species persistence times that are partially seen inside
the observational time window but start or/and end outside). Cases 1, 2, 3, and 4 refer to the description provided in the text.

A

B

Fig. S2. Imperfect detections in the breeding bird dataset. Comparison between the probability distributions of the variables τ0 (A) and τ00 (B) (seemain text for
explanation) derived from the original data (red) and those derived after the addition of possibly undetected species (green).
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Fig. S3. Persistence-time distributions of breeding bird passeriformes species. Probability density function of τ0 (green), τ00 (blue), and persistence times τ (red)
(see main text for explanation). Filled circles and solid lines show observational distributions and fits, respectively. The values of the best fit exponent is
α ¼ 1.76� 0.05.
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Fig. S4. Persistence-time exceedance probability distributions PτðtÞ for the neutral model implemented in a one-dimensional lattice. Different colors refer to
different uniform-dispersal radii. For all simulations ν ¼ 10−5 and time is expressed in generation time units (9).
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Fig. S5. Comparison between the persistence-time exceedance probability distribution PτðtÞ for the neutral (green) and the competition-survival trade-off
(blue) model implemented in a two-dimensional lattice. Note that in the power-law regime if pτðtÞ scales as t−α, PτðtÞ ∝ t−αþ1. The scaling exponent α in the
range 103 < Time < 104 is equal to 1.82� 0.01 for the neutral model and 1.80� 0.03 for the trade-off model. Errors are estimated through bootstrap method
(random sampling with replacement). For all simulations ν ¼ 10−5 and time is expressed in generation time units (9).
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