results are displayed in the same manner as in figure 5. Data as shown were from 2-3 month old wildtype control and DKO mouse forebrains. Data are presented as means±s.e.m. Unpaired student t-test. *indicates P<0.05, **indicates P<0.01. **Supplementary Figure 1** Characterization of cre-recombinase induced gene deletion in DKO mouse brain. **a**, Immunohistochemistry of cre-recombinase staining in cortex (CTX) and hippocampal dentate gyrus (DG) of adult DKO mouse brain showed cre only expressed in NeuN positive mature neurons. Scale bar at bottom right, 100um, applied to all panels. **b**, Southern blot analysis showed functional Dnmt1 2lox allele in control (con) mouse brain of 1 mo, 3 mo, and 4 mo. The deletion happened in the presence of cre-recombinase and led to 1lox recombination null allele as identified in the DKO mutant brain. **Supplementary Figure 2** Morphology analysis and subgranule zone (SGZ) cell proliferation assay in DKO mouse brain. **a**, Representative dorsal view of one pair of brains from 3 mo control and DKO. Scale bar at bottom right, 3 mm, applied to both panels. **b**, BrdU labeling cell proliferation assay of dentate gyrus subgranule zone showed similar level of cell proliferation between DKO and control mice. Four pairs of 3 month old mice were used. Data are presented as means±s.e.m. P>0.05 **Supplementary Figure 3** Normal basal synaptic transmission in *Dnmt* mutant mice and normal long term plasticity in single *Dnmt* KO mouse brain. **a**, Input-output curves from the DKO, *Dnmt1* SKO as well as wildtype control groups were essentially identical as shown by plotting the synaptic responses against presynaptic fiber volley amplitudes. **b**, LTP of adult *Dnmt1* SKO was indistinguishable from control mice (P>0.05). fEPSP slopes in control (round mark) versus SKO mice (triangle mark) were recorded 30 min before till 180 min after tetanic stimulation (100Hz, 1sec). Scale bar, 5 msec/1mV. **c**, **d**, No abnormalities of LTD was observed in adult *Dnmt1* SKO (**c**) and *Dnmt3a* SKO (**d**) mice (P>0.05). fEPSP slopes were recorded 12 min before till 60 min after stimulation (1Hz, 15min). Scale bar, 10 msec/0.5mV. Representative recordings are shown in the insets (**b**, **c**, **d**). 28 slices from 9 Con and 11 slices from 4 *Dnmt1* SKO were used in **b**. 10 slices from 5 Con and 6 slices from 3 *Dnmt1* SKO were recorded in **c**. 15 slices from 8 Con and 7 slices from 3 *Dnmt3a* SKO were recorded in **d**. Slice numbers were used for statistical analysis. Data are presented as means±s.e.m. P>0.05 **Supplementary Figure 4** Normal memory formation of *Dnmt1* and *Dnmt3a* SKO mice in Morris water maze test. **a, d,** Escape latency time to find the hidden platform plotted versus training day. Both *Dnmt1* SKO (a) and *Dnmt3a* SKO (d) improved similarly as littermate control mice to find the hidden platform (*Dnmt1* SKO: genotype *F*(1, 253)=0.00, P=0.944; day *F*(11, 253)=17.46, P<0.0001; genotype X day *F*(11, 253)=0.27, P=0.991. *Dnmt3a* SKO: genotype *F*(1, 154)=0.37, P=0.555; day *F*(11, 154)=9.47, P<0.0001; genotype X day *F*(11, 154)=0.23, P=0.995.). **b, e,** Percentage time spent in target quadrant during three individual probe trials. *Dnmt1* SKO (b) and *Dnmt3a* SKO (e) performed as well as the control mice in the target quadrant. **c,** g, The swimming speeds between the groups of *Dnmt1* SKO (b) or *Dnmt3a* SKO (e) with control mice were indistinguishable from each other. 17 control mice and 8 Dnmt1 SKO were used in figure a-c, 10 control mice and 6 Dnmt3a SKO were used in figure d-f. Data are presented as means±s.e.m. P>0.05 **Supplementary Figure 5** Contextual fear conditioning test in Dnmt single knockouts. **a**, Contexual memory consolidation was normal in Dnmt1 SKO mice when tested immdediately (for 3 min) and 24h later in a conditioning chamber. **b**, Contexual memory consolidation was normal in Dnmt3a SKO mice presentation. 6 mice for Dnmt1 SKO group, 8 mice for Dnmt3a SKO group and 21 control mice were used. Data are presented as means±s.e.m. P>0.05 **Supplementary Figure 6** DKO mouse brain has normal expression of *Reelin*, $PP1\beta$ and $PP1\gamma$. Real time PCR analysis showed no significant expression change of *Reln*, $PP1\beta$ or $PP1\gamma$ in DKO hippocampi as compared with control (P>0.05). 7 control and 5 DKO samples were used for this experiment. Data are presented as means±s.e.m. P>0.05 **Supplementary Figure 7** Dnmt single knockout mouse brain did not show significant gene expression change. **a,** Real time PCR analysis showed similar gene expression between Dnmt1 SKO and control (P>0.05). **b,** Real time PCR analysis showed similar gene expression between Dnmt3a SKO and control (P>0.05). 3-4 pairs of samples were used. Data are presented as means±s.e.m. **Supplementary Figure 8** Stat1 promoter methylation analysis in SKO and proximal region. **a,** No DNA methylation level change was found in Dnmt SKO. The region of interest was shown in Figure 5b. **b,** Bisulfite sequencing of *Stat1* proximal promoter region (-400bp to -750bp) showed no methylation change within DKO as compared with control samples. Data as shown were from 3 pairs of genomic DNAs of 2-3 month old wildtype and DKO mouse forebrains. Schematic gene promoter structure is shown on top with arrow pointing out transcription starting site (+1). 8 CpG site that marked with a vertical slash from -400bp to -750bp were analysed. The results are displayed in the same manner as in Figure 5. Data are presented as means±s.e.m. P>0.05. **Supplementary Figure 9** Purity test of FACS sorted NeuN positive and negative nuclei subpopulations. **a,** Representative microscopy picture showed mixed nuclei population before sorting. NeuN positive and negative nuclei populations were separated after FACS sorting. DNA dye Hoechst was used to label all the nuclei. White arrows were used to point out the NeuN positive nuclei or Hoechst positive nuclei in left or right column respectively. **b-e,** Post FACS sorting confirmed the purity of both positive (**d&e**) and negative (**b&c**) populations from either DKO (**c&e**) or Control (**b&d**) samples. **Supplementary Figure 10** Quantitative analysis of 5-methylcytosine and 5-hydroxymethylcytosine using LC-MS/MS. **a**, No significant difference was found between Dnmt1 or Dnmt3a SKO with control mice. 5-methylcytosine (5mdC) and 5-hydroxymethylcytosine (5hmdC) contents are expressed as the percentage in the total cytosine pool. **b**, Significantly less 5- hydroxymethylcytosine was found in DKO mouse brain. Data are from replicates of 3 separate experiments for Dnmt1 or Dnmt3a SKO and 4 for DKO 3 month old forebrain DNAs. Data are presented as means \pm s.e.m. * P < 0.05 #### Supplemental Fig1 (Fan et al.) # Supplemental Fig2 (Fan et al.) a #### Supplemental Fig3 (Fan et al.) Supplemental Fig5 (Fan et al.) Supplemental Fig6 (Fan et al.) Supplemental Fig7 (Fan et al.) ## Supplemental Fig8 (Fan et al.) ### Supplemental Fig9 (Fan et al.) Supplementary Table 1. List of genes of DKO MeDIP array assay | accessions | GeneName | Description | P value | |--|--|--|--| | ref NM_021554 ref 0610012D09Rik-854
ref NM_026701 ref 3110049J22RR-36583 ref 0610038K03Rik-522
ref MM_026701 ref 6101038K03Rik-14*pref 3110049J22RR-37579 | 0610012D09Rik
0610038K03Rik
0610038K03Rik | PROMOTER
PROMOTER | 7.936E-03
9.943E-03 | | ref NM_026701 ref 0610038K03Rik:474 ref 3110049J23Rik:37579 | 0610038K03Rik | INSIDE | 4.698E-03 | | refiNM_199197irefiNM_025299irefi1110032A13Rik-5267irefiTynl4-965irefiD18Wku98e-1018 | 1110012J17Rik
1110032A13Rik-Txnl4 | PROMOTER
DIVERGENT PROMOTER | 3.064E-03
5.428E-03 | | refINM 027880/refi1200003M09Rik:-641 | 1200003M09Rik
1300017J02Rik | PROMOTER | 4.448E-03 | | ref NM_027918 ref 1300017J02Rik:-397
ref NM_029882tref 1700095N21Rik:-859 | 1300017J02Rik
1700095N21Rik
2010002N04Rik | PROMOTER
PROMOTER | 9.476E-03
4.271E-03 | | ref[NM_029682]ref]1700095N21Rix-659
ref[NM_134133]ref]2010002N04Rix:23 | 2010002N04Rik | INSIDE | 3.907E-03 | | rel MM_025917 rel 2010315L10Rix:2490 rel Myo9b:97414 rel 9430098E02Rix:-1637 rel M26:11689
rel MM_027930 rel Bclaf1:34562 rel 2610016C23Rix:-727
rel MM_031638 rel MM_008690 rel 2610528M18Rix:-1343 rel Mut:-1149 regcs BC019175:1183 | 2010315L10Rik
2610016C23Rik | INSIDE
PROMOTER | 3.565E-03
6.815E-03 | | ref[NM_031863]ref[NM_008650]ref[2610528M18Rik:-1343]ref[Mut:-1149]mgcs[BC019175:1183 | 2610528M18Rik-Mut
2810429K17Rik | DIVERGENT_PROMOTER | 3.093E-03 | | | 2810441K11Rik | INSIDE
PROMOTER | 8.355E-03
7.501E-03 | | ref NM_177307 ref 4732474A20Rik:66 | | | | | ref[NM_029061]ref[4930517G15Rik:56]ref[1700008F21Rik:-1716 | 4833417A11Rik
4930517G15Rik | PROMOTER
INSIDE | 5.974E-03
2.152E-03 | | ref NM_027745 ref 4933434G05Rik:-415
ref NM_133680 ref 5730414C17Rik:-446 | 4933434G05Rik
5730414C17Rik | PROMOTER
PROMOTER | 3.317E-03
7.790E-03 | | ref NM_175263 ref 5730993N15Rix-897
ref NM_175204 ref 5830406J20Rix:152 ref Psmb5:-7573 ref Cdh24:15990 | 5730593N15Rik
5830406J20Rik | PROMOTER
INSIDE | 5.138E-04
7.198E-03 | | ref NM_175204 ref 5830406J20Rik:152 ref Psmb5:-7573 ref Cdh24:15990
ref NM_153409 ref A330102K23Rik:298 | 5830406J20Rik
A330102K23Rik | INSIDE | 7.198E-03
4.498F-04 | | ref NM_153409 ref A330102K23Rik:296
ref NM_145969 ref A630054L15Rik:-388 | A330102K23Rik
A630054L15Rik | INSIDE
PROMOTER | 4.496E-04
8.673E-03 | | ref NM_001002771 ref A830005F24Ric:291 ref 1700025J14Rik:-466
ref NM_021370 ref Accn5:-346 | A830005F24Rik
Accn5 | INSIDE
PROMOTER | 5.418E-03
7.775E-03 | | ref[NM_178873]ref[Adck2:-606 | Adck2 | PROMOTER
INSIDE | 5.133E-03 | | relijikil, (LC) (21370)peljikocho: 346
relijikil, 1783/206 jadoc 246
relijikil, 1822(28)peljikoda: 249
relijikil, (LC) (2003(28)peljikoda: 248
relijikil, (LC) (2003(28)peljikoda: 248
relijikil, 1727(34)peljikoda: 1783 (10)pecijikod 10277-813 | Adm2
Adora2a | INSIDE | 5.133E-03
6.181E-04
7.357E-03 | | ref NM_023328 ref Agtpbp1:-483 | Agtpbp1
Al449175 | PROMOTER
INSIDE | 5.924E-03
3.073E-03 | | Tell Nat 17879 [ref]Alds12:-266 | Al452372 | PROMOTER | 7.729E-03 | | ref NM_153543 ref Aldh112:-266
ref NM_009660 ref Alox15:-300 | Aldh1l2
Alox15 | PROMOTER
PROMOTER | 7.000E-06
1.796E-03 | | refINM 178058lrefIAmid:-421 | Amid | PROMOTER | 8 766F-03 | | ref[NM_009698]ref[Ris2:9522]ref[Aprt:-676]ref[Galns:33667
ref[NM_207260]ref[B230218L05Rik:-63002 | Aprt
B230218L05Rik | PROMOTER
PROMOTER | 3.194E-03
6.170E-03 | | ref NM_15325 ref Bb4:-669
ref NM_145601 ref NM_199455 ref BC016201:-4128 ref 1700055M20Rik:-801 | Bbs4 | PROMOTER | 7.998E-03 | | ref NM_145601 ref NM_199455 ref BC016201:-4128 ref 1700055M20Rik:-801 | BC016201-1700055M20Rik
BC016235 | DIVERGENT_PROMOTER
PROMOTER | 9.032E-03
6.705E-03 | | ref[NM_145343p]ref[NM_026211 mgcs BC025483:16 | BC021381-Tmed9 | | | | renjavi_140001/jenijavi_149001/jenijavi_14100000000000000000000000000000000000 | BC062951
Bxdc1 | PROMOTER
PROMOTER | 6.499E-03
3.681E-03 | | ref MM_09777 ref C1q5·348 ref C1q3;6348 ref C1qa:12235
ref MM_178877 ref C80638:-28 ref Dhrs6:26427 | C1qb
C80638 | PROMOTER
INSIDE | 9.266E-03
5.775E-03 | | ref NM_178877 ref C80638:-28 ref Dhrs6:26427
ref NM_022021 ref Cables1567 | C80638
Cables1 | PROMOTER
PROMOTER | 5.775E-03
2.160F-03 | | ref NM_022021 ref Cables1:-567
ref NM_009921 ref Nme8:17995 ref Camp:-511 | Camp | PROMOTER
PROMOTER | 2.160E-03
3.437E-03 | | ref NM_022309 ref Cbfb:-493
ref NM_032465 ref Cd96:-173 | Cbfb
Cd96 | PROMOTER
PROMOTER | 6.694E-03
7.789F-04 | | ref wM_09880 ref NM_008809 ref Cdx1-8108 ref Pdgfrb-1133
mgcs BC049719:4 | Cdx1-Pdgfrb
chr11:30367401-30367341 | DIVERGENT_PROMOTER | 7.488E-03
2.848E-03 | | mgcs BC049719:4
ref A830005F24Rik:24332 ref AW456874:87700 | cnr11:30367401-30367341
chr13:48033855-48033795 | Unknown
Unknown | 2.848E-03
5.860E-03 | | | chr13:48033855-48033795
chr16:78005086-78005146
chr3:118777552-118777612 | Unknown
Unknown | 5.860E-03
4.750E-03
4.439E-03 | | mgcs BC071238:330 | chr3:118777552-118777612
chr7:4619247-4619307
chr8:123241969-123242029 | Unknown
Unknown | 5.334E-03 | | mgcs BC024705:-1954 mgcs BC036300:-1121 | chr8:123241969-123242029 | Unknown | | | imposjecu / 1:28-3:30
mposjellC0247078-1964/imposjellC008300:-1121
mposjellC02470764/jet/Cnkt-397
refijNM_0.09971/jet/Emad3:17799/refijCdd3:-960/jet/[Thrap4:29015
refijNM_133695/jet/[Cyp2d13:264 | Crkl
Csf3 | PROMOTER
PROMOTER | 9.268E-03
2.519E-03 | | ref NM_133695 ref Cyp2d13:264 | Cyp2d13 | INSIDE
PROMOTER | 3.431E-03
2.677E-03 | | ref[NM_029653]ref[Dapk1:-1195
ref[NM_021294]ref[Dbil5:136]ref[Gemin4:-251]ref[2700085E05Rii::25893 | Dapk1
Dbil5 | INSIDE | 1.979E-04 | | ref[NM_019813]ref[Dbn1:-523
ref[NM_199079]ref[Ddx17:-923 | Dbn1
Ddx17 | PROMOTER
PROMOTER | 5.492E-03
1.410E-03 | | rel[viii].1990/9[rel[Dax17:323]
rel[NM_01028]rel[Ddx18:1277[mgcs]BC083059:-307
rel[NM_007857[rel]Dhh:-2887[rel]D15Erd735e:16673 | Ddx3x | INSIDE | 1.585E-03 | | ref NM_007857 ref Dhh:-2887 ref D15End735e:16673 | Dhh
Dsc2 | PROMOTER
INSIDE | 1.369E-04
8.275E-04 | | rei MA_013605 rei Dex2:115 mgcs BC057867:-105
rei NM_177020 rei E030011005Ric-525
rei NM_199307 rei Eco1:-406 | E030011O05Rik | PROMOTER
PROMOTER | 6.565E-03
4.972E-03 | | ref NM_199307 ref Ece1:-406 | Ece1
Eif2c2 | PROMOTER
PROMOTER | 4.972E-03 | | | Epor | PROMOTER | 7.601E-04
8.685E-03 | | ref NM_028039 ref NM_145944 ref Esco2-3426 ref 2610528H13Rik:-67 | Esco2-2610528H13Rik
F11 | DIVERGENT_PROMOTER
INSIDE | 9.638E-03
4.007E-03 | | renjwi_czoucopreni=11.22/enjwico1147508 renjwi_czoucopreni=11.22/enjwico147508 renjwi_12.55573/enji=1800.045F16864-460 renjwi_12.55573/enji=1800.45F16864-1814 renjwi_12.55573/enji=1800.4_1814 renjwi_12.555 | F830045P16Rik | PROMOTER
PROMOTER | 3.645E-03
8.462E-03 | | ref NM_153573 ref Fkbp14:-1814
ref NM_173430 ref NM_133789 ref Ekro-147 ref Strod-815 | Fkbp14
Fkrp-Stm4 | PROMOTER
DIVERGENT PROMOTER | 8.462E-03 | | ref[NM_008079]ref[NM_008152]ref[Galc:-8279[ref]Gpr65:-1040 | Galc-Gpr65 | DIVERGENT_PROMOTER
DIVERGENT_PROMOTER | 6.526E-03
6.492E-03 | | ref NM_144560 ref 2210403B10Rik:8476 ref Gas2f1:-1752 ref Ewsr1:32474
ref NM_008094 ref Gas=671 ref Mtx1:11837
ref NM_13859 ref Gid=-1172 | Gas2l1
Gba | PROMOTER
PROMOTER
PROMOTER | 4.536E-03
9.242E-04
3.681E-04 | | ref NM_138595 ref Gldc:-1172 | Gldc | PROMOTER | 3.681E-04 | | ref NM_008146 ref Chfr:40189 ref Golga3:-652
ref NM_175500 ref Goc5:-966 | Golga3
Gpc5 | PROMOTER
PROMOTER | 4.515E-03
6.902E-03 | | ref NM_130453 ref Gpha2:174 ref Ppp2r5b:9057 | Gpha2 | INSIDE
PROMOTER | 3.492E-03
2.346E-03 | | refinal, Jud. 4-deptil (Jan. 24) (1997) (199 | Gpr44
Gprc6a | PROMOTER | 7.600E-03 | | ref NM_026816 ref Gtf2f2:55665 mgcs BC028748:-7291 | Gtf2f2
Gtf2f2 | INSIDE
INSIDE | 5.804E-03
5.695E-03 | | TellyM_08198[rel[Rdp::168]rel[Re]2:10127[rel[Bing4:702]rel[B3galt4:11446 | H2 | PROMOTER | 8.063E-03 | | | H2
Has1 | INSIDE
PROMOTER | 5.852E-03
4.077E-03 | | renjvii | Hmga1l4-Rtkn | DIVERGENT_PROMOTER | 7.395E-03 | | ref NM_145856 ref II17f:-262
ref NM_178258 ref Ifror1:27729 ref II22re2:-2790 | II17f
II22ra2 | | | | ref NM_013565 ref ltga3:-4221 | Itga3 | PROMOTER
PROMOTER | 6.002E-03
6.568E-03 | | ref NM_008424 ref Rcne1:-329 | Kcne1
Kcnk7 | PROMOTER
PROMOTER | 3.434E-04
8.261E-03 | | ref NM_032396 ref Kremen1:-1326 | Kremen1 | PROMOTER
PROMOTER | 4.785E-03
6.515E-03 | | relivini, gosto-in Soliquinipassi 1.1137 rojenikusii 7:390en (2010).
28 relijikul, (2023)997eilikiremen 1:-1232
relijikul, 200474/jerlikirt2-184-080/jerlikirt2-20-17523
relijikul, 201671/jerlikirta 13.384-jerlijikirta 194-703/jerlikirta 1 | Krt2
Krtap13 | INSIDE | 6.515E-03
3.210E-03 | | ref NM_013707 ref NM_013713 ref Krtap14:-703 ref Krtap15:-2175 | Krtap14-Krtap15 | INSIDE
DIVERGENT_PROMOTER | 3.210E-03
4.009E-03 | | ref NM_133357 ref Krtcap1:202
ref NM_153069 ref Laf4l:72654 ref Leap2:-357 ref 1500040F11Rik:7328 ref Gdf9:-9891 | Krtcap1
Leap2 | INSIDE
PROMOTER | 4.529E-03
8.246E-03 | | relival155009jett_cate_2_2004jett_cet_27501
relival155009jett_cate_2_2004jett_cet_27601
relival146511jet_cate_2801
relival1073501fff-4671jett_cate_2801
relival1073501fff-4671jett_cate_2801
relival1073501 | Lect1
LOC13909 | PROMOTER
PROMOTER
PROMOTER | 3.163E-03
1.156E-03 | | ref NM_010735 ref Tnf:-4674 ref Lta:-1487 | Lta | PROMOTER | 1.458E-03 | | ref NM_011837 ref Ly6h:-461
ref NM_145428 ref Misr3:290 ref 1810073G14B;k-381 | Ly6h
Mfap3 | PROMOTER
INSIDE | 1.834E-03
9.418E-03 | | rel \M_148426 rel \frac{1}{2}3:290 rel 1810073G14Rik:-381
rel \M_181549 rel \frac{1}{2}3:290 rel 1810073G14Rik:-381 | Mrcl | PROMOTER | 1.231E-03 | | ref NM_025317 ref NM_018758 ref Matk:10042 ref Mrpl54:-660 ref Apba3:-652 ref Tjp3:23602 | Mrpl54-Apba3
Mtmr2 | DIVERGENT_PROMOTER
PROMOTER | 5.861E-03
9.936E-03 | | reflMAL 10.545/epiloMc2-06.075(epilopthat-1.0042)reflMp56-4-600]reflApba3-652/reflTp3.23002
reflMAL (0.0265)reflMpc78-1.025
reflMAL (0.0265)reflMpc78-1.025
reflMAL (0.0265)reflMpc78-1.025
reflMAL (0.0265)reflMpc78-1.025
reflMAL (0.0265)reflMpc2-02-1.11
reflMAL (0.0265)reflMpc3-03-1.035
reflMAL (0.0265)reflMpc3-03-1.035
reflMAL (0.0265)reflMpc3-03-035
reflMAL (0.0265)reflMpc3-035
reflMAL (0.0265)reflMpc3-035
refl | Myo7a
Myoz2 | | 2 230F-03 | | retjNM_021503jrefjMyo22:-311
refiNM_146302irefjOlfr1461:-159 | Olfr1461 | PROMOTER
PROMOTER | 8.446E-03
4.615E-03 | | ref NM_146466 ref Olfr165:-1110 | Olfr165 | PROMOTER | 4.859E-03
2.682E-03 | | | Olfr183
Olfr550 | PROMOTER
PROMOTER | 3.693E-03 | | ref NM_146392 ref Offr720:-680
ref NM_207558 ref Offr750:212 | Olfr720
Olfr750 | PROMOTER
INSIDE | 5.654E-03
8.895E-03 | | rel NM_146392 rel Ollr720-680
rel NM_20758 rel Ollr750-212
rel NM_146777 rel Ollr818-130 | Olfr818 | PROMOTER | 2 387F-03 | | ref NM_146417 ref Olfr877:-820
ref NM_011028 ref P2rxl1:-668 | Olfr877
P2rxl1 | PROMOTER
PROMOTER | 7.698E-03
2.361E-03 | | refINM_011066/macsIRC049699:-81 | Per2 | PROMOTER | 3.595E-03 | | | Pi16
Pib5pa-Sepm | PROMOTER
DIVERGENT_PROMOTER | 6.736E-03
8.783E-03 | | rel NM_172439 rel NM_053267 rel Pla2g3:16697 rel Pib5pa:-174 ref Sepm:-9890
rel NM_207683 rel Pik3c2g:128270 rel Pik3c2g:-551 | Pik3c2g | INSIDE | 2.028E-03 | | refINM_001001983irefIPik4ca:70188imgcsiBC034543:-165 | Pik4ca
Poldip2 | INSIDE
INSIDE | 6.818E-03
7.963E-03 | | refINM_026389[ref[Poidin2:4359]ref[A1316787-7968[ref[Tr/fein1-19540 | Ppil4 | INSIDE | 4.260E-03 | | ref[NM_026389[ref]Poldip2:4359[ref]Ål316787:-7968[ref]Tnfaip1:19540
ref[NM_026141[ref]Ppil4:265 | Pten | PROMOTER
PROMOTER | 6.273E-03
3.861E-03 | | ref NM_026141 ref Ppi4:265 | Pval | | 3.228E-04 | | rel NM_02614 rel Ppi4:265
rel NM_009860re Ppen:-4084
rel NM_13318 rel Ppj:-489
rel NM_0245 rel Rapt tb-485 | Pygl
Rap1b | INSIDE | | | refilNI_026141 [refl:Ppid:265
refilNI_026800]refi Pen:-4084
refilNI_033199[refl:Ppid:489
refilNI_024457[refilRep1b:48]
refilNI_096268[refilMed:17743]refilResdt1-1057[refi Pemt:70847 | Pygl | PROMOTER | 7.632E-03 | | relPMA_02664 1 relPpAs 255
relPMA_03860 relPMA_03860 relPMA_03864
relPMA_03860 relPMA_03860 relPMA_03866
relPMA_03860 relPMA_03860 relPMA_03866
relPMA_03860 relPMA_03860 relPMA_0386 | Pygl
Rap1b
Rasd1
Rshl2
Rtl1 | PROMOTER
INSIDE
PROMOTER | 7.632E-03
2.115E-03
8.655E-03 | | relPM. (265 41 yell Ppl4 265
Hern-Guld Hern-Guld Hern-G | Pygl
Rap1b
Rasd1
Rshl2
Rtl1
Scd3
Sdha | PROMOTER
INSIDE
PROMOTER
PROMOTER
INSIDE | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03 | | relPM. (265 141 pel Ppl-42 455 relPM. (265 141 pel Ppl-42 455 relPM. (265 245 pel Ppl-42 455 relPM. (265 245 pel Ppl-42 455 relPM. (265 245 pel Ppl-42 455 4 | Pygl
Rap1b
Rasd1
Rshl2
Ril1
Scd3
Sdha
Sfrs3 | PROMOTER
INSIDE
PROMOTER
PROMOTER
INSIDE
PROMOTER | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03 | | relPMA_0050141pellph4-205 relPMA_0080201pellph4-205 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_0080201pellpha-1054 relPMA_00801pellpha-1054 r | Pygl
Rap1b
Rasd1
Rash12
Rtl1
Scd3
Scha
Sfrs3
Sfrs5
Sh3tc2 | PROMOTER INSIDE PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03
2.839E-03
4.567E-03 | | relPMA_005614 juel [Pp44-2056
(mp40A_005602) [mp40A_005602] [mp40 | Pygl
Rap1b
Rasd1
Rsht2
Rti1
Scd3
Sdha
Sfra3
Sfra5
Sh3tc2
Sts15a4 | PROMOTER INSIDE PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER PROMOTER | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03
2.839E-03
4.567E-03
2.908E-03 | | relPMA_005614 style [Psi4-265 erpiMA_00562] bell per - 0.004 erpiMA_00562[e | Pygl
Raptb
Rasd1
Rsh12
Rt11
Sod3
Sofha
Sirs5
Sh3tc2
Slc15a4
Slc7a4
Slc7a4 | PROMOTER INSIDE PROMOTER PROMOTER INSIDE PROMOTER | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03
4.567E-03
2.908E-03
5.564E-03
2.914E-03 | | reifMAL (2014-1) per [Pal-4-205 (per 14) A. (2005-1) [Pal-4-20 | Pygl Raptb Rasd1 Rabt1 Rsh2 Rth1 Sod3 Sdha Sifrs3 Sifrs5 Sh3ts2 Sic1564 Sic7a4 Sic041 Sicoq4 Sicoq4 | PROMOTER INSIDE PROMOTER PROMOTER INSIDE PROMOTER | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03
2.839E-03
4.567E-03
2.908E-03
5.564E-03
2.914E-03
8.414E-03 | | reifMAL (2015-14) per [Psi-42-205 per [Psi-ML, 2016-2016-2016-2016-2016-2016-2016-2016- | Pygl
Raptb
Rasd1
Rsh12
Rt11
Sod3
Sofha
Sirs5
Sh3tc2
Slc15a4
Slc7a4
Slc7a4 | PROMOTER INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03
2.839E-03
2.908E-03
5.564E-03
2.914E-03
8.414E-03
6.879E-04 | | reifMAL 00514 juel Ppi44-205 errifMAL 00504 juel Ppi44-205 errifMAL 00504 juel Ppi44-205 errifMAL 00504 juel Ppi44-205 errifMAL 00504 juel Ppi46-205 errifMAL 00504 juel Ppi46-2054 Ppi46 | Pygl Rapitb Rapitb Rasidi Rapitb Rasidi Rabit2 Ratidi Rabit2 Ratidi Rabit2 Ratidi Ratidi Rabit2 Schia Schi | PROMOTER INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER | 7.632E-03
2.115E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03
2.839E-03
2.998E-03
5.564E-03
2.914E-03
8.879E-04
2.336E-03
2.834E-03 | | reiPM. 0.0502 reiPM. 2005 c. 1 (reiPM. | Pygl Raptb Ratel R | PROMOTER INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE INSIDE INSIDE | 7.632E-03
8.655E-03
2.930E-03
3.490E-03
2.839E-03
4.567E-03
2.908E-03
2.914E-03
8.474E-03
2.336E-03
2.834E-03
7.871E-03
8.255E-03 | | reifMAL (2014 1) per Park 4:285 errifMAL (2014 1) per Park 4:285 errifMAL (2014 1) per Park 4:286 e | Pygli Raptib Rap | PROMOTER INSIDE PROMOTER PROMOTER INSIDE PROMOTER INSIDE PROMOTER | 7.632E-03
2.910E-03
2.930E-03
3.490E-03
2.839E-03
2.908E-03
2.908E-03
2.914E-03
8.414E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E-03
2.936E | | relRMA_025778/iee/iRM2-243802/iei/Rps48a2-1000 relRMA_184100/iei/RelF3-20205 | Pygl Raptb Ratel R | PROMOTER INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE INSIDE INSIDE | 7.632E-03
2.910E-03
2.930E-03
3.490E-03
3.490E-03
4.587E-03
2.938E-03
2.914E-03
8.879E-04
2.336E-03
2.836E-03
2.836E-03
2.836E-03
2.836E-03
2.836E-03
2.836E-03
2.836E-03
2.855E-03 | | ### ALL AL | Pygli Rapth | PROMOTER INSIDE PROMOTER INSIDE PROMOTER INSIDE PROMOTER PROMOTER INSIDE PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER PROMOTER PROMOTER INSIDE PROMOTER INSIDE INSIDE INSIDE INSIDE | 7.632E-03
8.655E-03
2.930E-03
6.003E-03
3.490E-03
2.839E-03
4.567E-03
5.564E-03
2.914E-03
8.414E-03
4.236E-03
7.871E-03
8.255E-03
9.627E-03
4.317E-03
4.317E-03 | | reifMAL (2014 I) per I) pek-4-286 errifMAL (2014 I) per I) pek-4-286 errifMAL (2014 I) per II pek-4-286 errifMAL (2014 I) per II pek-1-286 errifMAL (2014 I) per II pek-1-286 errifMAL (2014 I) per II pek-1-105 I pel II pek-1-105 I pel II pek-1-2014 errifMAL (2014 I) (2015 I) pel II pek-1-2014 errifMAL (2015 I) pel II pek-1-2014 errifMAL (2016 I) pel II pek-1-2014 errifMAL (2016 I) pel II pek-1-2014 errifMAL (2017 I) pel II pek-1-216 III pek-1-216 errifMAL (2017 I) pel III pek-1-216 | Prigil Registration | PROMOTER INSIDE INSIDE INSIDE PROMOTER INSIDE IN | 7.632E-03 8.655E-03 8.655E-03 6.003E-03 9.900E-03 2.839E-03 2.839E-03 2.908E-03 5.564E-03 5.564E-03 6.679E-04 2.338E-03 3.825E-03 9.627E-03 4.317E-03 3.202E-03 3.202E-03 3.202E-03 3.202E-03 3.202E-03 | | ### ALL AL | Pygl Reptil Reptil Reptil Reptil Reptil Resid Sods Sods Sods Sods Sods Sods Sods Sod | PROMOTER INSIDE | 7.632E-03 8.655E-03 8.655E-03 6.003E-03 6.003E-03 2.909E-03 2.908E-03 2.908E-03 2.914E-03 2.914E-03 2.914E-03 2.634E-03 2.634E-03 3.625E-03 4.748E-03 3.202E-03 3.202E-03 7.778E-03 9.042E-03 | | ### ALL DOS-141 pell-phi-4-235 #### ##### ALL DOS-141 pell-phi-4-235 ##### ALL DOS-141 | Pygl Regular R | PROMOTER NISIGE PROMOTER NISIGE PROMOTER PROMOTE | 7.632E-03 2.15E-03 8.655E-03 8.655E-03 8.605E-03 6.003E-03 8.003E-03 8.405E-03 2.908E-03 2.908E-03 2.908E-03 2.908E-03 2.908E-03 2.908E-03 2.908E-03 2.908E-03 3.002E-03 3.002E-03 3.002E-03 3.002E-03 9.002E-03 9.002E-03 9.002E-03 9.002E-03 | | ### AUTO 15-01-15 (1997) PM-2-205 AU | Pygl Rept Rept Rept Rept Rept Rept Rept Rept | PROMOTER NASIGE PROMOTER PROMO | 7.632E-03 8.655E-03 8.655E-03 8.655E-03 8.600E-03 8.600E-03 8.600E-03 8.400E-03 8.400E | | reifMAL (2014 I jue ju | Pygl Regular R | PROMOTER NISIGE PROMOTER NISIGE PROMOTER PROMOTE | 7.632E-03 8.655E-03 8.655E-03 8.655E-03 8.600E-03 8.000E-03 8.000E |