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Supplementary Methods

A method for the physico-chemical evaluation of selective constraints on amino

acid replacements

Physico-chemical evaluations of {wab} are not meaningless, even though selective constraints {wab} in Eq.
9 in the text can be optimized for observed data. Their performance in reproducing observed substitution
data indicates how extensively selective constraints on amino acid substitutions can be explained by
physico-chemical requirements on amino acid substitutions to preserve protein structures and functions.
In this section, a new physico-chemical method for the evaluation of the selective constraints is introduced.

The rate of acceptance in amino acid replacements is assumed here to be proportional to the mean
relative stability of the native conformation C of the mutant type of sequence S ′ to that of the wild
type of sequence S. The probability P (C|S) of a conformation C that a sequence S takes is equal to
the Boltzmann factor of C divided by the conformational partition function of S. The conformational
partition function of a protein may be crudely approximated in the high temperature expansion.

log P (C|S)

≃ −
1

kT
E(C,S)

−[log(
∑

C∈{compact}

1) −
1

kT
〈E(C,S)〉compact,T→∞] (S1-1)

where k is the Boltzmann constant, T is temperature, and E(C,S) is the conformational free energy of
the conformation C taken by the sequence S. First, the sum over conformations C are approximated
by the sum over compact/nativelike conformations whose energies are significantly lower than those of
extended conformations. Then, the logarithm of the partition function is approximated by the sum of the
first and the second terms in the high temperature expansion. Thus, the relative stability of the native
conformation of sequence S ′ to that of sequence S is estimated by

log[P (C|S ′)/P (C|S)]

≃ −
1

kT
(E(C,S ′) − E(C,S)) ,

if the amino acid composition does not change. (S1-2)

The mean energy of compact conformations does not depend on the details of the amino acid order in
protein sequences but primarily on the amino acid composition. Therefore, if the amino acid composition
keeps constant during amino acid substitutions, as indicated by the present assumption of the stationary
state for amino acid substitutions, the relative stability can be approximated by the difference of the
native conformational energies of the two sequences.

As a result, the parameter wab, whose exponent is the acceptance rate of substitutions between amino
acids of type a and type b, is evaluated here to be proportional to the mean free energy increment caused
by a substitution between amino acids of type a and type b. Then, the mean free energy increment is
approximated by the sum of two terms one of which results from the increment of contact energy between
amino acids in a protein structure and the other from the change of side-chain volume.

wab = −β[∆ε̂c
ab + ∆ε̂v

ab] + w0(1 − δab) (S1-3)

where β is a parameter, ∆ε̂c
ab is the mean increment of contact energy between amino acids due to an

amino acid exchange between amino acids of type a and type b in a protein structure, and ∆ε̂v
ab is the
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mean increment of free energy caused by the change of side-chain volume between amino acids of type
a and type b. The exponent of the constant term, ew0 , may represent the ratio of replaceable amino
acid sites in a protein sequence, and then the first term represents the ratio of neutral substitutions at
such mutable sites; the ratio of nonsynonymous to synonymous mutations is primarily determined by w0.
However, w0 may be positive, meaning positive selection.

Mean energy increment for each type of amino acid substitutions

To consider the mean contact energy increment due to an amino acid replacement between amino
acids of type a and type b, we must note that the evolutionary process of amino acid substitutions in
proteins is assumed here to be in the stationary process, which means that the amino acid composition
of proteins must be kept constant in the whole process of amino acid substitutions. To keep the amino
acid composition constant, an exchange of amino acids in a protein may be considered as the process of
substitutions. A mean contact energy increment, 2∆εc

ab, due to an exchange between amino acids of type
a and type b in a protein can be estimated [17] by averaging the difference of interaction energies over
surrounding residues as

∆ε̂c
ab = ∆ε̂c

ba =
∑

c

(ebc − eac)(
Nac

Na

−
Nbc

Nb

) ≥ 0 (S1-4)

where eac(= eca) is the contact energy between amino acids of type a and c, and Nac(= Nca) is a half
of the observed number of contacts between amino acids of type a and type c, and Na is the number
of amino acids of type a in protein structures. The contact energies eab and the number of contacts
Nab are the ones evaluated from the numbers of contacts between amino acids observed in representative
protein structures [46]. The mean energy increment due to an amino acid exchange is non-negative
for any pair of amino acids [17], because the contact energies are derived by assuming that the native
conformations of proteins are at the minimum of the total contact energy. This means that no favorable
substitutions occur in protein evolution in which amino acid substitutions are in the stationary state.
Thus, the assumption of the stationary state for amino acid substitutions is consistent [46] with the
neutral theory [47] of molecular evolution.

A contact potential used is a statistical estimate [46] of contact energies with a correction [48] for
the Bethe approximation [49, 50]. The contact energy between amino acids of type a and type b was
estimated as

eab = err + α′[∆eBethe
ar + ∆eBethe

rb +
β′

α′
δeBethe

ab ] (S1-5)

err is part of contact energies irrespective of residue types and is called a collapse energy, which is
essential for a protein to fold by cancelling out the large conformational entropy of extended conformations
but cannot be estimated explicitly from contact frequencies between amino acids in protein structures.
∆eBethe

ar and δeBethe
ab are the values of ∆ear and δeab evaluated by the Bethe approximation from the

observed numbers of contacts between amino acids. ∆ear + err is a partition energy or hydrophobic
energy for a residue of type a. δeab is an intrinsic contact energy for a contact between residues of type
a and type b; refer to [48, 50] for their exact definitions. The proportional constants for correction were
estimated as β′/α′ = 2.2 and α′ ≤ 1 [48]. Here, energy is measured in kT units. The scaling constant
β in Eq. S1-3 in the text is given for α′ = 1.

The energy increment ∆ε̂v
ab, which results from a replacement between amino acids of different sizes,

is assumed here to be proportional to the volume difference between amino acids of the type a and type
b:

∆ε̂v
ab = υ [

∑
a,b ∆ε̂c

ab∑
a,b |Va − Vb|

]|Va − Vb| (S1-6)
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where Va is the volume of amino acid a, and υ is a proportional constant. The value of υ is taken to
be equal to one, otherwise specified; that is, the contact energy increment and the volume change are
assumed to contribute to the total free energy increment and the acceptance rate with an equal weight.
The amino acid volumes used here are the mean volume occupied by each type of amino acid in protein
structures, and taken from the set named BL+ in Table 6 of Tsai et al. [51]; the volume of a half cystine
(labeled as ”cys” in the table) is used here for a cysteine.

The values of [∆ε̂c
ab +∆ε̂v

ab] for all amino acid pairs are provided in Supporting Information, Data S1.
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Supplementary Results

Models with no amino acid dependences of selective constraints

Before examining the effects of selective constraints (wab) on likelihood, ML values for the models with
no amino acid dependences of selective constraints, i.e., β = 0 in Eq. 11, were calculated for JTT, WAG,
cpREV, and mtREV. The ∆AIC value and the ML estimators of mξη, fmut

ξ , fusage
ξ , and σ for each

model are listed in Table 2 and Table S1, respectively. Please note that w0 is fixed here to 0, and so
there is completely no selection pressure on nonsynonymous replacements; the likelihoods of amino acid
substitution matrices do not strongly depend on w0 and codon substitution data are required to reliably
estimate the value of w0. ML parameters in each model are specified by the parameter id numbers written
in the parenthesis in the second column; each id number corresponds to the parameter id number listed
in Table 3. Each model is called the No-Constraints model with a suffix meaning the number of ML
parameters; see Table 1. Although No-Constraints models corresponding to the Kimura’s two-parameter
model [1], the model of Hasegawa et al. [2], the Tamura-Nei model [3] and the general reversible model
[52] were examined, only three models for each matrix are shown in Table 2.

The bias toward transition has been often pointed out [53]. In the present results for the No-
Constraints models, tthe ratio of transition to transversion exchangeability mtc|ag/m[tc][ag] is evaluated
to be between 1.5 and 3.3 for all four matrices of JTT, WAG, cpREV, and mtREV, although that for
mtREV is larger than those for the others. For the No-Constraints-1 of mtREV, its parameter is evaluated
to be m̂tc|ag/m̂[tc][ag] = 2.32 and the ratio of the total transition to the total transversion rate is equal
to 1.24. This estimate of transition to transversion exchangeability bias for mitochondrial proteins is
significantly smaller than the previous estimate by a maximum likelihood method for phylogeny. Yang
et al. [7] estimated m̂tc|ag/m̂[tc][ag] = 9.157 for the model corresponding to the No-Constraints-1 in the
analyses of the most likely phylogeny of mitochondrial DNA encoding proteins.

Although the significance of each parameter is indicated by the AIC values of the No-Constraints
models with the various sets of parameters, its discussion is postponed until the next section where
results for models with selective constraints are presented, because no selective constraints on amino
acids is a completely wrong assumption.

A physico-chemical evaluation of selective constraints on amino acids

Let us examine how the likelihood of JTT is improved by using the present formula for selective con-
straints, Eq. 11. The first evaluation of selective constraints on amino acids is based on the mean energy
increments due to an amino acid replacement that result from the changes of pairwise contact energies
[17, 46, 48, 49] and the volume change [51] of an amino acid side chain by an amino acid replacement.
This model in which selective constraints on amino acids are evaluated from mean energy increments due
to an amino acid replacement is called here an Energy-Increment-based (EI) model with a suffix meaning
the number of ML parameters; see Table 1. The ML values for the EI models with various sets of
parameters are listed in Table 2, and the ML estimates for the EI-10 and the EI-11 are listed in Table
S2.

The No-Constraints-1, the No-Constraints-10, and the No-Constraints-13 models correspond to a
special case of β = 0 in the EI-2, the EI-11, and the EI-14 models, respectively. As a matter of course, the
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selective constraints on amino acids that represent conservative selection against amino acid substitutions
significantly improve the ∆AIC values for all substitution matrices.

The significance of multiple nucleotide changes in a codon is indicated by the improvements of the
∆AIC between the EI-3 and the EI-4, between the EI-12 and the EI-13M, between the EI-10 and the
EI-11, and between the EI-13 and the EI-14 models, in the latter of which the parameter m̂[tc][ag] for
multiple nucleotide changes is optimized as a free variable. Also, the ∆AIC is improved by the inclusion
of the scale parameter σ; compare the ∆AIC values between the EI-2 and the EI-3, between the EI-10M
and the EI-11, between the EI-12 and the EI-13, and between the EI-13M and the EI-14. Thus, taking
account of both multiple nucleotide changes in a codon and variations in substitution rates is essential
to obtain the reasonably large ML values.

The most effective one of the remaining parameters on likelihood is the parameter for transition-
transversion bias, mtc|ag/m[tc][ag]. The next effective parameters are fmut

ξ and fusage
ξ , and finally the

remaining rate parameters. The ∆AIC values of the models EI-2G, EI-3, EI-7, EI-11, EI-10MU, and EI-
14 indicate that all parameters are effective to significantly improve the likelihood of each of the observed
matrices. The ML estimates of the parameters fmut

ξ and fusage
ξ show the similar tendencies between

the models, although this tendency differs among the substitution matrices, JTT, WAG, cpREV, and
mtREV. The comparison of the ∆AIC values between the EI-10MU and the EI-14 models indicates that
the parameters for exchangeabilities except for transition-transversion bias, are statistically significant
but are not so effective as fmut

ξ and fusage
ξ on the improvement of the likelihood.

The relative weight υ of the effects of volume change due to an amino acid replacement on selective
constraints in Eq. S1-S1-6 is assumed to be equal to one but may be varied. Optimizing υ as a free
variable can improve the value of ∆AIC from 13151.9 to 12932.1 for JTT. This model may be justified
because the effects of volume change due to an amino acid replacement on protein structures may be
different among the types of protein structures, i.e., between membrane and soluble proteins, and between
α and β proteins.

Table 2 shows that the parameters {fusage
ξ } for codon usage are significant to improve likelihood,

however, the ML estimator of fusage
ξ often takes extremely small or large values. Thus, it may be better

to assume equal codon usage by fixing fusage
ξ = 0.25 if codon frequencies are unknown. In the following,

equal codon usage is assumed in most cases of unknown codon frequencies.

Other physico-chemical evaluations of selective constraints on amino acids

Grantham [31] and Miyata et al. [32] introduced physico-chemical distances between amino acids in
attempts to model selective restraints against amino acid substitutions. Their physico-chemical distances
were also used by Goldman and Yang [18] and Yang et al. [7], in which the acceptance ratio (expwab)
was represented by using a linear formula of Miyata et al. [32] (expwab = α(1 − βdab)) or a geometric
formula (expwab = α exp(−βdab)) of physico-chemical distance dab between amino acids of type a and b;
where α and β are parameters. In their models, stepwise substitutions through single nucleotide changes
were assumed, and codon substitutions due to multiple nucleotide changes were completely neglected; in
other words, m[tc][ag] → 0 with mξη/m[tc][ag] = constant in Eq. 1 was assumed. Yang et al. [7] reported
that the use of the Miyata’s distance [32] for the acceptance ratio in their codon-based model lead to
a better fit to the small data of mitochondrial protein sequences than the JTT-F and the mtREV24-F
models, in which the rate matrix of JTT or mtREV24 with an adjustment for the equilibrium frequencies
of amino acids is used; their codon-based models correspond to the present model with m[tc][ag] → 0,
mtc = mag, and mta = mtg = mca = mcg, i.e., the two parameter model for nucleotide mutations with
the adjustment for amino acid frequencies.

Table 2 and Table S3 list the ML values and the ML estimates for JTT and WAG in the present
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models in which either the Grantham’s distance or the Miyata’s distance (dab for an amino acid pair a
and b) is used as westimate

ab = −dab to evaluate the selective constraints wab in Eq. 11;

wab ≡ −βdab + w0(1 − δab) (S1-7)

where w0 is always fixed to the value 0, because the likelihoods of amino acid substitution matrices do not
significantly depend on w0. These models are called here Grantham and Miyata with a suffix meaning
the number of ML parameters; see Table 1. Both the selective constraints based on the Grantham’s and
on the Miyata’s distances significantly improve the ∆AIC.

Miyata et al. [32] claimed that their new scale can explain the tendencies of amino acid replacements
better than the Grantham’s distance scale. Table 2 shows that the Miyata’s physico-chemical distance
performs better in all parameter sets than the Grantham’s distance. This result is consistent with that of
Yang et al. [7] for mitochondrial proteins. The present physico-chemical evaluation of selective constraints
(EI model) fits JTT and WAG even better than the Miyata’s distance scale, although the performances
of both the methods are almost same for cpREV and mtREV.

One of the important facts in these results is that allowing multiple nucleotide changes in a codon
significantly improve the AIC irrespective of the estimations of selective constraints; compare the ∆ AIC
values between the Grantham-10 and the Grantham-11, and between the Miyata-10 and the Miyata-11.
In other words, the improvement of the AIC value is not an artifact due to the present physico-chemical
estimation of selective constraints.

Evolutionary process of amino acid substitutions in terms of log-odds

Kinjo and Nishikawa [45] reported that the most principal component of log-odds matrices exhibits a
sharp transition at the sequence identity of 30-35%, which almost coincides with the twilight zone in
homology search. This interesting feature of log-odds matrices was found by analyzing the eigenspectra
of the log-odds matrices for 18 different levels of sequence identities, which were constructed from the
structure-based alignments of protein sequences in the Homstrad database [54] with the procedure of
the BLOSUM substitution matrices [55]. Although they did not mention, this feature is also encoded in
an amino acid or codon substitution probability matrix for a short time interval such as JTT, WAG, LG,
and KHG. Here, we show that this feature is encoded in the transition matrix estimated by the ML-91+
model that precisely reproduces JTT.

Fig. S11A shows the first, the second and the third principal eigenvalues of the log-odds matrix
(log-O(〈S〉(t))ab) of the ML-91+ are drawn on amino acid identity by solid, broken and dotted lines,
respectively. The dependences of these eigenvalues on the amino acid identity are almost exactly the
same as those shown in the Fig. 1A of their paper [45]; i.e., the first principal eigenvalue changes its sign
from negative to positive at about 35 % identity, and the second principal eigenvalue takes the place of
a negative eigenvalue by changing its sign from positive to negative. A similar event of exchanging the
second and the third principal eigenvalues in the order occurs between 15 and 20 % identity in their case
and at about 25 % identity in the present JTT-ML91+ matrix; note that the value of sequence identity
x % on the abscissa in their Fig. 1A [45] represents a log-odds matrix compiled from alignments with
sequence identity ≥ x % and < (x + 10) %.

From Fig. S11A, one infers that the vector corresponding to the first principal eigenvector at about
80 % identity becomes the second principal eigenvector at about 35 % identity and the third principal
eigenvector at about 25 % identity. Likewise one infers that the vector corresponding to the second
principal eigenvector at about 80 % identity becomes the first principal eigenvector below about 35 %
identity, and the vector being equal to the third principal eigenvector at about 80 % identity becomes
the second principal eigenvector below 25 % identity. This inference is exactly correct, as shown in Figs.
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S11B, S11C, and S11D and in Fig. 1B of Kinjo and Nishikawa [45]. In Figs. S11B, S11C, and S11D, the
inner product V i(t) ·V

JTT
j (20PAM) of the ith principal eigenvectors V i(t) of the JTT-ML91+ log-odds

matrix at time t and the jth principal eigenvectors V
JTT
j (20PAM) of the JTT log-odds matrix at 20

PAM is plotted against sequence identity at time t. Fig. S11 indicates that the eigenvalues change but
the eigenvectors remain almost the same until sequence identity attains about 20 %. The sharp exchange
between the first and the second principal eigenvalues is not peculiar to the present substitution matrices
but can occur in any transition matrix in which diagonal elements differ from each other; transition
matrices generated with Rab = const · fb have such a characteristic feature. A critical point is what the
principal eigenvectors are as well as those eigenvalues.

The first principal eigenvalues of the log-odds matrices are large negative in t > 40 % identity,
contributing negative values to the diagonal elements of the log-odds matrices. Thus, the first principal
eigenvector with a large negative eigenvalue is a primary contribution to the mutability of each amino
acid, as pointed out in Kinjo and Nishikawa [45]. On the other hand, the second and the third principal
eigenvalues are positive, so that the product of ith and jth elements of their eigenvectors represents how
often the ith and the jth types of amino acids can be replaced to each other. Kinjo and Nishikawa [45]
showed that the second principal eigenvector is well correlated with a hydrophobicity scale of amino acids.

Thus, the sharp transition in the order of the eigenvalues contributing to the mutabilities of amino
acids and to the replaceabilities of amino acid pairs at about 35 % identity means that the memory
of ancestral sequences disappear and amino acids in the sequences are replaced with similar physico-
chemical types of amino acids at about 35 % identity. This explains why it becomes hard to identify
homologous relationships between sequences whose similarities are less than 35 % identity [45]. Barriers
for identifying sequence homologies may also exist at about 25 % and 15 %, where the second and the
third sharp transitions in the order of the eigenvalues occur. Because conservative substitutions in respect
to physico-chemical properties of amino acids are required for proteins to fold into their native structures,
the second barrier at about 25 % corresponds to a threshold for being able to detect structural homology
between proteins. The similar characteristic features are observed in the mtREV and the cpREV matrices,
too. Thus, the characteristic features becoming manifest after a long evolutionary history of proteins are
completely encoded in the transition matrices based on the reversible Markov model. This fact supports
in some extent the appropriateness of the present Markov model to describe the evolutionary process of
codon substitutions.
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Figure S1. The ML-87 and the ML-91 models fitted to WAG. Each element
log-O(〈S〉(τ̂ , σ̂))ab of the log-odds matrices of (A) the ML-87 and (B) the ML-91 models fitted to the
1-PAM WAG matrix is plotted against the log-odds log-O(SWAG(1 PAM))ab calculated from WAG.
Plus, circle, and cross marks show the log-odds values for one-, two-, and three-step amino acid pairs,
respectively. The dotted line in each figure shows the line of equal values between the ordinate and the
abscissa.
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Figure S2. Comparison between various estimates of selective constraint for each amino acid

pair The ML estimates of selective constraint on substitutions of each amino acid pair are compared between

the models fitted to various empirical substitution matrices. The estimates ŵab for multi-step amino acid pairs

that belong to the least exchangeable class at least in one of the models are not shown. Plus, circle, and cross

marks show the values for one-, two-, and three-step amino acid pairs, respectively.
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ŵ

  W
A

G
-M

L
91

+
ab

Mean Energy Increment
0 2 4 6 8

0

2

4

6

- 
ŵ
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Figure S3. Selective constraint for each amino acid pair estimated from WAG and from

LG. The ML estimate, −ŵWAG-ML91+
ab in (A) and −ŵLG-ML91+

ab in (B), of selective constraint on
substitutions of each amino acid pair in the ML-91+ models fitted to the 1-PAM matrices of WAG and
LG is plotted against the mean energy increment due to an amino acid substitution, (∆ε̂c

ab + ∆ε̂v
ab)

defined by Eqs. S1-4, S1-5, and S1-6. The estimates ŵab for the least exchangeable class of multi-step
amino acid pairs are not shown. Plus, circle, and cross marks show the values for one-, two-, and
three-step amino acid pairs, respectively.
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1-PAM WAG matrix is plotted against that in the ML-91 model.
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Figure S5. Models fitted to each of JTT, WAG, and LG. Each element log-O(〈S〉(τ̂ , σ̂))ab of the

log-odds matrix of the model fitted to each empirical substitution matrix is plotted against the log-odds

log-O(Sobs(1 PAM))ab calculated from the corresponding empirical substitution matrix. Plus, circle, and cross

marks show the log-odds values for one-, two-, and three-step amino acid pairs, respectively. The dotted line in

each figure shows the line of equal values between the ordinate and the abscissa.
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Figure S6. Models fitted to each of cpREV and mtREV. Each element log-O(〈S〉(τ̂ , σ̂))ab of the

log-odds matrix of the model fitted to each empirical substitution matrix is plotted against the log-odds

log-O(Sobs(1 PAM))ab calculated from the corresponding empirical substitution matrix. Plus, circle, and cross

marks show the log-odds values for one-, two-, and three-step amino acid pairs, respectively. The dotted line in

each figure shows the line of equal values between the ordinate and the abscissa.
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Figure S7. Models fitted to the KHG-derived amino acid substitution matrix. Each
element log-O(〈S〉(τ̂ , σ̂))ab of the log-odds matrix of the model fitted to the 1-PAM KHG-derived amino
acid substitution matrix (KHGaa) is plotted against the log-odds log-O(Sobs(1 PAM))ab calculated
from KHGaa. Plus, circle, and cross marks show the log-odds values for one-, two-, and three-step
amino acid pairs, respectively. The dotted line in each figure shows the line of equal values between the
ordinate and the abscissa.
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Figure S8. The JTT-ML91+-12 model fitted to the 1-PAM KHG codon substitution

matrix. Each element log-O(〈S〉(τ̂ , σ̂))µν of the log-odds matrix corresponding to (A) single, (B)
double, and (C) triple nucleotide changes in the JTT-ML91+-12 model fitted to the 1-PAM KHG
codon substitution matrix is plotted against the log-odds log-O(SKHG(1 PAM))µν calculated from
KHG. Upper triangle, plus, circle, and cross marks show the log-odds values for synonymous pairs and
one-, two-, and three-step amino acid pairs, respectively. The dotted line in each figure shows the line of
equal values between the ordinate and the abscissa.
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Figure S9. The WAG-ML91+-12 model fitted to the 1-PAM KHG codon substitution

matrix. Each element log-O(〈S〉(τ̂ , σ̂))µν of the log-odds matrix corresponding to (A) single, (B)
double, and (C) triple nucleotide changes in the WAG-ML91+-12 model fitted to the 1-PAM KHG
codon substitution matrix is plotted against the log-odds log-O(SKHG(1 PAM))µν calculated from
KHG. Upper triangle, plus, circle, and cross marks show the log-odds values for synonymous pairs and
one-, two-, and three-step amino acid pairs, respectively. The dotted line in each figure shows the line of
equal values between the ordinate and the abscissa.
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Figure S10. The LG-ML91+-12 model fitted to the 1-PAM KHG codon substitution

matrix. Each element log-O(〈S〉(τ̂ , σ̂))µν of the log-odds matrix corresponding to (A) single, (B)
double, and (C) triple nucleotide changes in the LG-ML91+-12 model fitted to the 1-PAM KHG codon
substitution matrix is plotted against the log-odds log-O(SKHG(1 PAM))µν calculated from KHG.
Upper triangle, plus, circle, and cross marks show the log-odds values for synonymous pairs and one-,
two-, and three-step amino acid pairs, respectively. The dotted line in each figure shows the line of
equal values between the ordinate and the abscissa.
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Figure S11. Temporal changes of the eigenvalues and the eigenvectors of the log-odds matrix

log-O(〈S〉(t)) calculated by the ML-91+ model fitted to JTT as a function of sequence identity. In

(A), the solid, the broken, and the dotted lines show the temporal changes of the first (λ1), the second (λ2), and

the third (λ3) principal eigenvalues, respectively. The inner products of the eigenvectors with the eigenvectors of

the JTT 20-PAM log-odds matrix, V i(t) · V
JTT
j (20-PAM), are shown in (B) for the first principal eigenvector

(i = 1), in (C) for the second principal eigenvector (i = 2), and in (D) for the third principal eigenvector (i = 3),

by solid lines for j = 1, by broken lines for j = 2, and by dotted lines for j = 3.
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Table S1. ML estimates of the present models without selective constraints on amino acids for the
1-PAM substitution matrices of JTT, WAG, cpREV, and mtREV.

JTT WAG cpREV mtREV
No-Constraints- a No-Constraints- a No-Constraints- a No-Constraints- a

id no. parameter 1 10 1 10 1 10 1 10
0 −ŵ0 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

1 1/β̂ (∞) (∞) (∞) (∞) (∞) (∞) (∞) (∞)
2 m̂[tc][ag] (→ 0) → 0 (→ 0) 0.279 (→ 0) 0.0455 (→ 0) 0.0405
3 m̂tc|ag/m̂[tc][ag] 2.16 2.20 1.61 1.54 2.17 2.62 2.32 3.24
4 m̂ag/m̂tc|ag (1.0) 1.28 (1.0) 1.36 (1.0) 1.50 (1.0) 1.47
5 m̂ta/m̂[tc][ag] (1.0) 0.629 (1.0) 0.687 (1.0) 0.480 (1.0) 0.595
6 m̂tg/m̂[tc][ag] (1.0) 0.708 (1.0) 0.622 (1.0) 0.775 (1.0) 0.373
7 m̂ca/m̂[tc][ag] (1.0) 1.28 (1.0) 1.45 (1.0) 1.64 (1.0) 1.96

8 f̂mut
t+a (0.5) 0.495 (0.5) 0.401 (0.5) 0.279 (0.5) 0.226

9 f̂mut
t /f̂mut

t+a (0.5) 0.486 (0.5) 0.503 (0.5) 0.563 (0.5) 0.583

10 f̂mut
c /f̂mut

c+g (0.5) 0.335 (0.5) 0.354 (0.5) 0.306 (0.5) 0.223

14 σ̂ (→ 0) 1.76 (→ 0) 1.58 (→ 0) 2.96 (→ 0) 2.46
τ̂ σ̂ 0.0137 0.0228 0.0136 0.0206 0.0139 0.0296 0.0149 0.0296
#parameters 21 30 21 30 21 30 21 30

ÎKL(θ̂) × 108 b 729533 207260 1156393 233841 1014962 249448 945289 305500
∆AIC c 86428.1 24595.5 37917.6 7719.1 3478.0 904.5 2644.1 901.0
Ratio of substitution rates
per codon
the total base/codon 1.0 1.30 1.0 1.47 1.0 1.40 1.0 1.35
transition/transversion 1.13 1.00 0.848 0.752 1.11 1.02 1.24 1.10
nonsynonymous/synonymousd 2.75 4.15 2.84 5.77 2.60 4.91 2.09 3.30

Ratio of substitution rates
per codon for σ → 0
the total base/codon 1.0 1.0 1.0 1.21 1.0 1.04 1.0 1.02
transition/transversion 1.13 1.20 0.848 0.853 1.11 1.43 1.24 1.45
nonsynonymous/synonymousd 2.75 2.83 2.84 4.26 2.60 3.19 2.09 2.08

a In all models, equal codon usage (f̂
usage
t = f̂

usage
a = f̂

usage
c = f̂

usage
g = 0.25) is assumed. If the value of a parameter is

parenthesized, the parameter is not variable but fixed to the value specified.
b ÎKL(θ̂) = −(ℓ(θ̂)/N + 2.98607330) for JTT, −(ℓ(θ̂)/N + 2.97444860) for WAG, −(ℓ(θ̂)/N + 2.95801048) for cpREV, and

−(ℓ(θ̂)/N + 2.85313622) for mtREV; see text for details.
c ∆AIC ≡ 2NÎKL(θ̂) + 2× #parameters with N ≃ 5919000 for JTT, N ≈ 1637663 for WAG, N ≈ 169269 for cpREV and
N ≈ 137637 for mtREV; see text for details.
d Note that these ratios are not the ratios of the rates per site but per codon; see text for details.
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Table S2. ML estimates of the present models with the selective constraints based on mean energy
increments due to an amino acid substitution (EI) for the 1-PAM substitution matrices of JTT, WAG,
cpREV, and mtREV.

JTT WAG cpREV mtREV
EI-10 a EI-11 a EI-10 a EI-11 a EI-10 a EI-11 a EI-10 a EI-11 a

−ŵ0 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

1/β̂ 2.50 2.60 1.78 2.14 2.15 2.26 2.14 2.29
m̂[tc][ag] (→ 0) 0.308 (→ 0) 0.916 (→ 0) 0.684 (→ 0) 0.737
m̂tc|ag/m̂[tc][ag] 2.51 2.22 1.82 1.58 2.82 2.24 4.21 3.06
m̂ag/m̂tc|ag 1.01 1.01 1.13 1.10 1.19 1.14 1.05 1.01
m̂ta/m̂[tc][ag] 1.02 1.07 1.26 1.22 0.992 1.14 1.48 1.44
m̂tg/m̂[tc][ag] 1.06 1.09 0.985 1.01 1.34 1.23 0.792 0.797
m̂ca/m̂[tc][ag] 0.937 0.891 1.04 0.949 0.974 0.925 1.17 1.08

f̂mut
t+a 0.582 0.565 0.516 0.486 0.376 0.405 0.359 0.403

f̂mut
t /f̂mut

t+a 0.522 0.525 0.603 0.575 0.647 0.642 0.671 0.646

f̂mut
c /f̂mut

c+g 0.432 0.450 0.495 0.511 0.450 0.462 0.388 0.404

σ̂ 3.20 0.918 11.7 0.998 7.26 0.969 5.25 0.339
τ̂ σ̂ 0.0358 0.0217 0.0709 0.0204 0.0558 0.0211 0.0531 0.0185
#parameters 30 31 30 31 30 31 30 31

ÎKL(θ̂) × 108 b 129885 126178 144772 126415 180379 169548 233525 222441
∆AIC c 15435.7 14999.0 4801.8 4202.5 670.7 636.0 702.8 674.3
Ratio of substitution rates
per codon

the total base/codon 1.36 1.35 1.53 1.54 1.45 1.48 1.38 1.44
transition/transversion 1.09 1.11 0.803 0.834 1.08 1.13 1.34 1.41
nonsynonymous/synonymousd 2.09 2.13 2.48 2.82 2.45 2.65 1.75 1.92

Ratio of substitution rates per codon
for σ → 0

total base/codon 1,0 1.18 1.0 1.38 1.0 1.31 1.0 1.37
transition/transversion 1.49 1.28 1.25 0.944 1.93 1.36 2.35 1.56
nonsynonymous/synonymousd 1.12 1.59 0.945 2.13 1.15 1.99 0.767 1.64

Ratio of substitution rates per codon
for wab = 0 and σ → 0

total base/codon 1.0 1.28 1.0 1.59 1.0 1.48 1.0 1.59
transition/transversion 1.31 1.15 0.983 0.830 1.51 1.50 2.15 1.57
nonsynonymous/synonymousd 2.57 3.83 2.82 6.53 2.74 1.16 1.84 4.51

a In all models, equal codon usage ( f̂
usage
t = f̂

usage
a = f̂

usage
c = f̂

usage
g = 0.25 ) is assumed. If the value of a parameter

is parenthesized, the parameter is not variable but fixed to the value specified.
b ÎKL(θ̂) = −(ℓ(θ̂)/N + 2.98607330) for JTT, −(ℓ(θ̂)/N + 2.97444860) for WAG, −(ℓ(θ̂)/N + 2.95801048) for cpREV, and

−(ℓ(θ̂)/N + 2.85313622) for mtREV; see text for details.
c ∆AIC ≡ 2NÎKL(θ̂) + 2× #parameters with N ≃ 5919000 for JTT, N ≈ 1637663 for WAG, N ≈ 169269 for cpREV, and
N ≈ 137637 for mtREV; see text for details.
d Note that these ratios are not the ratios of the rates per site but per codon; see text for details.
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Table S3. ML estimates of the present models with the selective constraints based on the Grantham’s
and the Miyata’s amino acid distances for the 1-PAM substitution matrices of JTT and WAG.

JTT WAG
Grantham- a Miyata- a Grantham- a Miyata- a

10 11 10 11 10 11 10 11
−ŵ0 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

1/β̂ 82.0 81.9 1.71 1.82 58.9 65.1 1.28 1.59
m̂[tc][ag] (→ 0) 0.0392 (→ 0) 0.617 (→ 0) 0.353 (→ 0) 1.33
m̂tc|ag/m̂[tc][ag] 2.12 2.09 2.32 1.92 1.49 1.44 1.64 1.40
m̂ag/m̂tc|ag 1.08 1.08 1.05 1.05 1.18 1.17 1.15 1.11
m̂ta/m̂[tc][ag] 0.864 0.863 0.925 0.983 0.987 0.938 1.02 1.02
m̂tg/m̂[tc][ag] 0.961 0.983 0.922 0.985 0.816 0.907 0.813 0.912
m̂ca/m̂[tc][ag] 1.16 1.16 1.26 1.12 1.39 1.32 1.55 1.23

f̂mut
t+a 0.582 0.581 0.574 0.543 0.528 0.517 0.499 0.466

f̂mut
t /f̂mut

t+a 0.512 0.513 0.513 0.505 0.573 0.562 0.575 0.531

f̂mut
c /f̂mut

c+g 0.384 0.385 0.448 0.479 0.412 0.420 0.513 0.541

σ̂ 2.80 2.37 2.98 0.00938 9.00 2.97 9.87 0.00118
τ̂ σ̂ 0.0330 0.0306 0.0342 0.0147 0.0596 0.0317 0.0632 0.0135
#parameters 30 31 30 31 30 31 30 31

ÎKL(θ̂) × 108 b 157835 157281 138419 130721 173694 168463 154639 133347
∆AIC c 18744.5 18680.9 16446.1 15536.8 5749.0 5579.7 5124.9 4429.5
Ratio of substitution rates per codon

the total base/the total codon 1.35 1.35 1.35 1.34 1.51 1.50 1.51 1.53
transition/transversion 1.04 1.04 1.07 1.10 0.768 0.779 0.791 0.812
nonsynonymous/synonymousd 2.21 2.20 2.14 2.18 2.54 2.65 2.53 2.93

Ratio of substitution rates per codon
for σ → 0

the total base/the total codon 1.0 1.02 1.0 1.33 1.0 1.16 1.0 1.53
transition/transversion 1.33 1.31 1.42 1.10 1.06 0.951 1.17 0.813
nonsynonymous/synonymousd 1.22 1.28 1.17 2.17 1.04 1.52 1.02 2.93

Ratio of substitution rates per codon
for wab = 0 and σ → 0

the total base/the total codon 1.0 1.04 1.0 1.48 1.0 1.26 1.0 1.74
transition/transversion 1.12 1.10 1.21 0.990 0.803 0.771 0.881 0.736
nonsynonymous/synonymousd 2.67 2.81 2.63 5.24 2.97 4.20 2.92 8.49

a In all models, equal codon usage (f̂
usage
t = f̂

usage
a = f̂

usage
c = f̂

usage
g = 0.25) is assumed. If the value of a parameter is

parenthesized, the parameter is not variable but fixed to the value specified.
b ÎKL(θ̂) = −(ℓ(θ̂)/N + 2.98607330) for JTT, and −(ℓ(θ̂)/N + 2.97444860) for WAG; see text for details.
c ∆AIC ≡ 2NÎKL(θ̂) + 2× #parameters with N = 5919000 for JTT, and N ≈ 1637663 for WAG; see text for details.
d Note that these ratios are not the ratios of the rates per site but per codon; see text for details.


