A General and Efficient Approach for the Construction of RNA Oligonucleotides Containing a 5'-Phosphorothiolate Linkage

Nan-Sheng Li^{1,*}, John K. Frederiksen^{1,†}, Selene C. Koo¹, Jun Lu¹, Timothy J. Wilson²,

David M.J. Lilley^{2,*}, and Joseph A. Piccirilli^{1,*}

¹The University of Chicago, Center for Integrative Science, Departments of Biochemistry & Molecular Biology and Chemistry, 929 E. 57th Street, Room W406, Chicago, IL 60637, USA.

²Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, U.K.

[†]Present address: Department of Pathology and Laboratory Medicine, The University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14642.

*To whom correspondence should be addressed. E-mails: nli@uchicago.edu, d.m.j.lilley@dundee.ac.uk, jpicciri@uchicago.edu

Supplementary Data

Table S1: Synthesis and a	oplications of oligonucleotides	containing a 3'-S	linkage
	1 0	8	

Oligonucleotide	Synthetic route	Applications	Reference
3'-S			
d(T _{3'-S} T)	Coupling of 5'-deoxy-5'-O- monomethoxytrityl-3'- mercaptothymidine with 3'-O- acetylthymidine in the presence of (tetrazol-1-yl) ₂ POCH ₂ CH ₂ CN and 2,6- lutidine		(1)
	Solid phase synthesis using thymidine 3'-S-phosphoramidite		(2)
d(GCACGT _{3'-S} TGCACG)	Solid phase synthesis using thymidine 3'-S-phosphoramidite	Thio analog of a thymine photodimer	(3)
d(CCCUCU _{3'-S} A)	Solid phase synthesis using ribo- and deoxyribouridine 3'-S-phosphoramidites	Metal ion-dependent cleavage by the <i>Tetrahymena</i> group I ribozyme	(4)
		Metal ion-dependent cleavage by Klenow fragment of <i>E. coli</i> DNA polymerase I	(5)
U _{3´S} U	Addition of 2´,3´-O-bis(benzoyl)- uridine 5´-H-phosphonate to 2´,5´-O- bis(Fpmp)-3´-(o,p- dinitrophenyldisulfanyl) uridine	RNA cleavage studies	(6)
I21 sU	Addition of 2',3'-O-bis(<i>tert</i> - butyldimethylsilyl)-uridine 5'-H- phosphonate to 9-[5-O- (monomethoxytrityl)-3-deoxy-3-S-(5-	Metal ion-dependent cleavage by the <i>Tetrahymena</i> group I ribozyme; test substrate for T4 PNK, snake venom PDE, and ribonuclease T_2	(7,8)
	nitropyridyl-2-disulfanyl)-2- <i>O</i> -(<i>tert</i> - butyldimethylsilyl)-β-D- ribofuranosyl]hypoxanthine	Sugar pucker conformational analysis by NMR	(9)
d(GATT _{3'-S} GCTAGGC)	Solid phase synthesis using thymidine 3'-S-phosphoramidite	Mechanistic studies of the <i>E. coli</i> RuvC protein	(10)
(dU _{3'-S}) GUGAGUACUC CCUCUCAAAA	Solid phase synthesis using riboinosine and deoxyribouridine 3'-S-	Metal ion dependence of pre-mRNA splicing	(11)

AI _{3'-S} CUCGCGGUU	phosphoramidites		
(C _{2'-OMe}) ₃ UCdU _{3'-S} rA	Solid phase synthesis using 2'-deoxy- 3'-thiouridine phosphoramidites	Metal ion-dependent cleavage by the <i>Tetrahymena</i> group I ribozyme	(12,13)
$R_{\rm P}, S_{\rm P}$ -(C _{2'-OMe}) ₃ UCdU _{3'-S} rA _{5'-PS}			(13)
UC _{3'-S} GAGCGGUCU	Solid phase synthesis using 3'		
U _{3'-S} ACUAUGUAU	thiouridine and thiocytidine phosphoramidites	Metal ion-dependent cleavage by the $ai5\gamma$ group II intron	(14)
UC _{3'-S} ACUAUGUAU			
CGGGAU _{3'-S} ACUAUG			(15)
GACAI3-SGAUCCAAGAGUACU	Solid phase synthesis using 3'- thioinosine phosphoramidite	Metal ion dependence of pre-mRNA splicing	(16)
d(CCTAAATT _{3'-S} TGCC) and others	Solid phase synthesis using thymidine 3'-S-phosphoramidite	Sugar pucker conformational analysis by NMR	(17,18)
d(AAACGTCGCACTTCGC _{3'-S}	Solid phase synthesis using 2'-deoxy-	Mechanistic studies of E. coli DNA	(10)
TAGGCAGCCTGCATCCAGG)	3'-thiocytidine phosphoramidite	T:G-mismatch endonuclease	(15)
d(TGTGTATTGTCT _{3'-S} ATAG)			
d(TGTGTATTGTCT _{3'-S}	Solid phase synthesis using thymidine	Mechanistic studies of TrwC conjugative relaxase	(20)
ATAGCCCAGATTTAAGGA)	3'-S-phosphoramidite		
d(GCGCACCGAAAGGTGCGTATTG			
TCT _{3'-S} ATAG)			

Abbrievations: d, deoxyribo-; r, ribo-; Fpmp, 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl; I, inosine; PNK, polynucleotide kinase; PDE, phosphodiesterase; PS, nonbridging phosphorothioate.

Oligoncleotide	Synthetic route	Applications	Reference
5'-8			
$U_{5'-SH}(U_{5'-S})_n U_{5'-S,2',3'-P}$	Treatment of 5'-thiouridine-2',3'-cyclic phosphate with diphenyl phosphorochloridate and base		(21)
$d(TT_{5'\cdot S})$	Thymidine 3'-thiophosphate attack on 5'-iodo-5'-deoxythymidine		(22)
$d(TT_{5'-S}T_{5'-S,3'-O-PS})$	Repeated addition of 5'-O-		(23)
d[T(T _{5'-S}) ₁₂]	tosylthymidine-3'- <i>O</i> - cyanoethylphosphorothioate mononucleotides to a terminal thymidine 3'- <i>O</i> -thiophosphate	Test substrates for T4 PNK and DNA polymerase, <i>E. coli</i> DNA polymerase I, snake venom PDE, and S1 nuclease	(24)
d(TCCGTTGAAGCCTGCTTTT _{5'-S} TTATACTAACTTGAGC)	Solid phase synthesis using 5'-S-trityl deoxythymidine phosphoramidite	Suicide substrate for DNA topoisomerase I	(25)
UU _{5'-S}	Uridine 3'-H-phosphonate attack on 5'- deoxy-5'-(o- nitrophenyldisulfanyl)uridine	RNA cleavage studies	(26)
	Uridine 3'- <i>O</i> -thiophosphate attack on 5'-iodo-5'-deoxyuridine	RNA cleavage studies	(27)
d(ACGGTCTCA _{5'-S} CGAGC)	Solid phase synthesis using 5'-S-trityl- 2'-deoxyadenosine and 2'-O-Cee- outiding phosphoremidites	RNA cleavage studies; metal ion- dependent cleavage by the hammerhead	(28,29)
d(ACGGTCT)r(C)d(A _{5′-s} CGAGC)	cytume prosphoramentes	noozyme	
GCCGUCC _{5'-S} CCCG	Solid phase synthesis using "5′-thiol amidite"	Metal ion-dependent cleavage by the hammerhead ribozyme	(30)
d(AGCCCTTACTT _{5'-S} TGACGGTATATCT) (and others)	Solid phase synthesis using 5´-S-(4,4´- dimethoxytrityl)-2´-deoxy-5´- thiothymidine phosphoramidite	Detection and construction of DNA arrays based on incorporation of selective cleavage sites	(31)
UUC _{2'-O-o-NBn} d(G _{5'-S})GGUCGGC	Solid phase synthesis using 5'-S-trityl- 2'-deoxyguanosine phosphoramidite	General acid catalysis by the HDV ribozyme	(32)
d(GGGCAT)r(C)d(C _{5'-S} TGGATTCCACTCGCC)	Enzymatic ligation of 5'- thiophosphorylated d(CTGGATTCCACTCGCC) with d(GGGCAT)r(C)	General acid catalysis by the hammerhead ribozyme	(33)

Table S2: Synthesis and applications of oligonucleotides containing a 5'-S linkage

Abbreviations: d, deoxyribo-; r, ribo-; PS, nonbridging phosphorothioate; PNK, polynucleotide kinase; PDE, phosphodiesterase; Cee, 1-(2-chloroethoxy)ethyl; *o*-NBn, *ortho*-nitrobenzyl; HDV, hepatitis delta virus.

References

- 1. Cosstick, R. and Vyle, J.S. (1988) Synthesis and Phosphorus Sulfur Bond-Cleavage of 3'-Thiothymidylyl(3'-5')Thymidine. J. *Chem. Soc. Chem. Comm.*, 992-993.
- 2. Cosstick, R. and Vyle, J.S. (1990) Synthesis and Properties of Dithymidine Phosphate Analogs Containing 3'-Thiothymidine. *Nucleic Acids Res.*, **18**, 829-835.
- 3. Murata, T., Iwai, S. and Ohtsuka, E. (1992) Synthesis of a Dodecadeoxyribooligonucleotide Containing a 3'-Thio Analog of Thymidine Photodimer. *Heterocycles*, **33**, 529-531.
- 4. Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. and Cech, T.R. (1993) Metal ion catalysis in the Tetrahymena ribozyme reaction. *Nature*, **361**, 85-88.
- 5. Curley, J.F., Joyce, C.M. and Piccirilli, J.A. (1997) Functional evidence that the 3 '-5 ' exonuclease domain of *Escherichia coli* DNA polymerase I employs a divalent metal ion in leaving group stabilization. *J. Am. Chem. Soc.*, **119**, 12691-12692.
- 6. Liu, X.H. and Reese, C.B. (1996) 3'-Thiouridylyl-(3'•5')-uridine. *Tetrahedron Lett.*, **37**, 925-928.
- 7. Weinstein, L.B., Jones, B.C.N.M., Cosstick, R. and Cech, T.R. (1997) A second catalytic metal ion in a group I ribozyme. *Nature*, **388**, 805-808.
- 8. Weinstein, L.B., Earnshaw, D.J., Cosstick, R. and Cech, T.R. (1996) Synthesis and characterization of an RNA dinucleotide containing a 3'-*S*-phosphorothiolate linkage. *J. Am. Chem. Soc.*, **118**, 10341-10350.
- 9. Beevers, A.P.G., Witch, E.M., Jones, B.C.N.M., Cosstick, R., Arnold, J.R.P. and Fisher, J. (1999) Conformational analysis of 3'-S-PO₃-linked ribo- and deoxyribodinucleoside monophosphates. *Magn. Reson. Chem.*, **37**, 814-820.
- 10. Shah, R., Cosstick, R. and West, S.C. (1997) The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts. *Embo J.*, **16**, 1464-1472.
- 11. Sontheimer, E.J., Sun, S. and Piccirilli, J.A. (1997) Metal ion catalysis during splicing of premessenger RNA. *Nature*, **388**, 801-805.
- 12. Shan, S., Yoshida, A., Sun, S., Piccirilli, J.A. and Herschlag, D. (1999) Three metal ions at the active site of the Tetrahymena group I ribozyme. *Proc. Natl. Acad. Sci. USA*, **96**, 12299-12304.
- 13. Yoshida, A., Sun, S. and Piccirilli, J.A. (1999) A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. *Nat. Struct. Biol.*, **6**, 318-321.
- 14. Sontheimer, E.J., Gordon, P.M. and Piccirilli, J.A. (1999) Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. *Genes Dev.*, **13**, 1729-1741.

- 15. Gordon, P.M., Sontheimer, E.J. and Piccirilli, J.A. (2000) Kinetic characterization of the second step of group II intron splicing: role of metal ions and the cleavage site 2'-OH in catalysis. *Biochemistry*, **39**, 12939-12952.
- 16. Gordon, P.M., Sontheimer, E.J. and Piccirilli, J.A. (2000) Metal ion catalysis during the exon-ligation step of nuclear premRNA splicing: extending the parallels between the spliceosome and group II introns. *RNA*, **6**, 199-205.
- 17. Beevers, A.P., Fettes, K.J., Sabbagh, G., Murad, F.K., Arnold, J.R., Cosstick, R. and Fisher, J. (2004) NMR and UV studies of 3'-S-phosphorothiolate modified DNA in a DNA : RNA hybrid dodecamer duplex; implications for antisense drug design. *Org. Biomol. Chem.*, **2**, 114-119.
- 18. Beevers, A.P., Fettes, K.J., O'Neil, I.A., Roberts, S.M., Arnold, J.R., Cosstick, R. and Fisher, J. (2002) Probing the effect of a 3'-S-phosphorothiolate link on the conformation of a DNA:RNA hybrid; implications for antisense drug design. *Chem. Commun. (Camb.)*, 1458-1459.
- 19. Elliott, S.L., Brazier, J., Cosstick, R. and Connolly, B.A. (2005) Mechanism of the Escherichia coli DNA T:G-mismatch endonuclease (Vsr protein) probed with thiophosphate-containing oligodeoxynucleotides. *J. Mol. Biol.*, **353**, 692-703.
- 20. Gonzalez-Perez, B., Lucas, M., Cooke, L.A., Vyle, J.S., de la Cruz, F. and Moncalian, G. (2007) Analysis of DNA processing reactions in bacterial conjugation by using suicide oligonucleotides. *Embo J.*, **26**, 3847-3857.
- 21. Michelson, A.M. (1962) Polynucleotides. Part IV. Synthesis of Oligonucleotide Analogues Substituted in the Sugar Portion. J. *Chem. Soc.*, 979-982.
- 22. Cook, A.F. (1970) Nucleoside S-alkyl phosphorothioates. IV. Synthesis of nucleoside phosphorothioate monoesters. *J. Am. Chem. Soc.*, **92**, 190-195.
- 23. Chladek, S. and Nagyvary, J. (1972) Nucleophilic reactions of some nucleoside phosphorothioates. *J. Am. Chem. Soc.*, **94**, 2079-2085.
- 24. Rybakov, V.N., Rivkin, M.I. and Kumarev, V.P. (1981) Some substrate properties of analogues of oligothymidylates with p-s-C5⁻ bonds. *Nucleic Acids Res.*, **9**, 189-201.
- 25. Burgin, A.B., Jr., Huizenga, B.N. and Nash, H.A. (1995) A novel suicide substrate for DNA topoisomerases and site-specific recombinases. *Nucleic Acids Res.*, **23**, 2973-2979.
- 26. Liu, X.H. and Reese, C.B. (1995) Uridylyl-(3[′]□5[′])-(5[′]-Thiouridine) an Exceptionally Base-Labile Di-Ribonucleoside Phosphate Analog. *Tetrahedron Lett.*, **36**, 3413-3416.
- 27. Thomson, J.B., Patel, B.K., Jimenez, V., Eckart, K. and Eckstein, F. (1996) Synthesis and Properties of Diuridine Phosphate Analogues Containing Thio and Amino Modifications. *J. Org. Chem.*, **61**, 6273-6281.
- 28. Kuimelis, R.G. and McLaughlin, L.W. (1997) Application of a 5⁻-bridging phosphorothioate to probe divalent metal and hammerhead ribozyme mediated RNA cleavage. *Bioorg. Med. Chem.*, **5**, 1051-1061.
- 29. Kuimelis, R.G. and McLaughlin, L.W. (1995) Cleavage properties of an oligonucleotide containing a bridged internucleotide 5'-phosphorothioate RNA linkage. *Nucleic Acids Res.*, **23**, 4753-4760.

- 30. Zhou, D.M., Usman, N., Wincott, F.E., MatulicAdamic, J., Orita, M., Zhang, L.H., Komiyama, M., Kumar, P.K.R. and Taira, K. (1996) Evidence for the rate-limiting departure of the 5'-oxygen in nonenzymatic and hammerhead ribozyme-catalyzed reactions. *J. Am. Chem. Soc.*, **118**, 5862-5866.
- 31. Jahn-Hofmann, K. and Engels, J.W. (2004) Efficient Solid Phase Synthesis of Cleavable Oligodeoxynucleotides Based on a Novel Strategy for the Synthesis of 5´-S-(4,4´-Dimethoxytrityl)-2´-deoxy-5´-thionucleoside Phosphoramidites. *Helv. Chim. Acta*, **87**, 2812-2828.
- 32. Das, S.R. and Piccirilli, J.A. (2005) General acid catalysis by the hepatitis delta virus ribozyme. *Nat. Chem. Biol.*, **1**, 45-52.
- 33. Thomas, J.M. and Perrin, D.M. (2009) Probing general acid catalysis in the hammerhead ribozyme. *J. Am. Chem. Soc.*, **131**, 1135-1143.

Figure S1. Retrosynthetic scheme for the construction of RNA oligonucleotides containing a 5'-phosphorothiolate linkage.

Figure S2. Mechanism of the UV light-mediated removal of the *o*-nitrobenzyl group to form ROH.

Figure S3: MALDI-TOF Mass of 21: Calcd Mass: 3694.5, MALDI-TOF Mass: 3694.8.

Figure S4: MALDI-TOF Mass of 23: Calcd Mass: 9515.3, MALDI-TOF Mass: 9514.1.

Figure S5. HPLC trace of crude reaction mixture after the first ligation step. HPLC conditions: C18 reversed-phase column, 6-16% acetonitrile / 94-84% 0.1 M TEAA pH 7.0 over 35 min. Peak identities are confirmed by migration of purified peaks on a denaturing gel.

Scheme S1: Synthesis of 5'-GCGCG_{2'-o-NBn}A_{5'-S}AGGGCGUC-3'

Scheme S3: Synthesis of 5'-GCGCG_{2'-o-NBn}A_{5'-S}AGGGCGUCGUCGCCCCGA-3'

Scheme S4: Synthesis of 5'-GCGCG2'-o-NBnA5'-SAGGGCGUCGUCGCCCCGA-3'

