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Web Appendix A: Derivation of Approximate Standard Errors Via the Sandwich

Method

Throughout, we use the notation defined in the main paper. We provide expressions required
to calculate the asymptotic variances of the three estimators for 5 (p x 1) considered in the
main paper: @pw, abr*, and @pt*. Let 7 be the collection of unknown parameters involved in
obtaining the estimators for 3; in particular, 7 = (¢, 87)T for @pw, =Tl .. e, 7T
for By, and 7 = (7, 7,67, 8T)T for @pt*. The estimator for 7, 7, in each case can be ob-
tained by solving a set of M-estimating equations given by > " | p;(7) = 0 (Stefanski and
Boos, 2002), where the last p entries of p;(7) correspond to the estimating equation for 3, and
pi(7) is defined for each estimator below. Let A, = n~t> " A, =n"t>"  9/0m{p:(7)},
and B, = n~' > pi(7)pl (7). Following standard theory, the asymptotic covariance ma-
trix of 7 can be approximated by the empirical sandwich matrix V,, = n=*A 1B, (A Y7,
Therefore, the asymptotic variances of the three estimators can be approximated by the
lower, rightmost diagonal (p X p) submatrix of the corresponding matrix V,,. We present the
form of p;(7) and A; for each of the estimators, from which the form of V,, may be calculated.
The desired diagonal submatrix of V,, may then be obtained numerically, with the required
matrix inversion carried out by standard routines.

Throughout, we assume that A\. {G.(Z), ¢}, r =1,..., M, are logistic regression models,

and ¢ = (YT, ...,¢1)7T are estimated via separate ML fits for each r = 1,..., M, where 5(@,,



is a row vector consisting of the covariates used in the modeling of A\, {G,(Z;), ¢, }, including

a “1” for the intercept term. For @-pw, pi(T) is given by

Znd{T Gr(Z:), ¥} K 1 {Gr(Zi), ¥} Ap{Gr(Zi), 0}

K AGH(Z), 9} MAGHZi), 9

[(C; = o0)m(Zi, )
( Ziy )

nd{l,G1(Zi)7¢1}Xgl

pi(T) =

dMo {M, G (Z:), s} Xy
(00, Z;, 1)

and A; is given by

Di,l 0 0
0 0 0
0 O Di,r O O
A, = ’
0 0 0 0
0 0 Diny O
Ei. E;, Eiy Dig
where
Dy = —I(C: 2 I\ AGHZ), 0} L~ A AGHZ), )| KL Koy, 1 =1, M,
(G = oco)m(Z;, B) _ -
ar W(OO,ZZ',Ip) )\ {G ( ) wr}Xz,r, 7’—1,...’]\47
Dig = —t— 7. B).
8= oo zyp) A

and mg(Z;, #) is a column vector of partial derivatives of m(Z;, 3) with respect to .
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We implemented @\br* as described in Bang and Robins (2005); i.e., we added as a covari-
ate K- {GT(Z), T @T} in the conditional mean functions h*{G,(Z),&,} corresponding
to a generalized linear model with canonical link, where IA(T_ ! {GT(Z ), @1, e ,@ET} is an es-
timate for the true cumulative hazard K ' {G,(Z),¢1,...,¢.}, r=1,..., M. We write the
new conditional mean function including additional covariate I?,T ! {GT(Z ),121, . ,1@} as

WA{G(Z), 1, ..., &, B}. For this estimator, p;(7) is given by

dMc{1,G1(Z;),¢n} XZT1

dMo {M, Gr(Z:), ¥} XDy
1(C; > 1) [h5 {G2(Zi), 1, b2, &2, BY — Wi {G1(Zi), 41, &1, BY]
pi(T) = XNy g, & 1G1(Zi), 1, 61, B} ’

I(C; > M) [m(Z;, B) — by {Gum(Zi), ¥, Eur, BY]
XNorpgor {Gm(Zi), 0, 60, B}
i {G1(Zs), 91, &1, B)

-----

hi{G(Z), 01, s ¥, &, B} with respect to oy, ..., & m =1, .., M.
The matrix A; is given by

Diy 0 0
Ay o . 0 - -0

Ai=| Ay |» Au=] 0 0 Dy, 0 0 |
As; o --- 0 . 0 0
0 0 Diy 0



and ASi:(FLZ- 0 -+ 0 Fy; 0 - 0 F3)

where

Di, = —I(Ci>\AGAZ), 0} 1= M AGHZ), 0 ) XE Xy, T=1,..., M,
Fl,i = hiwl {Gl(Zi)uwlughﬂ}v F2,i = hj{’& {Gl(Zi)7w17£176}7
sy = hys{Gi(Zi), 1, &, B}

ie., F1;, Fy;, F3,; are partial derivatives of hi {G1(Z;), 41, &, B} with respect to 1y, &, and

0, respectively. The Ay; term involves the partial derivatives of the column vector

I(C; > 1) [M5{G2(Zi), ¥, ¥a, &0, B — h1{G1(Zi), 41, &1, BY]
}h3 6 {G1(Z0), 1, &1, B
p2i(T) =
I(C; > M) [m(Z;, B) = hiy {Gu(Zi), ¥, Eur, BY]
X W ens {G21(Z3) 00, Eaa, B}

with respect to 7. Often in practice, it is cumbersome to obtain the analytical derivatives
of po;(7) with respect to 7. In our implementation, we used numerical derivatives as an
approximation to the analytical derivatives. For example, to calculate the derivative of
p2.i(7) with respect to the kth element of 7, we used a one-sided numerical approximation
of the form {po;(7 + €l) — pa;(7)} /€ for small enough € > 0, where 1 is a column vector

with 1 on the kth entry and all other entries 0.



For aopt*a pi(T) is given by

dMc {1,G1(Z), 0} X5,

pi(T) = dMc {M, Grn(Zi), ¥u} XZTM
Zﬁil I(CZ > T)@“ {GT’ z } |: { 7“+1 5 ?/)} { T’(Zz)>ga¢}}
I(Ci:oom Z,ﬂ MdM{rG )qp} |
oz T KAGz)ay I8
where
PAGL(Z).8) = hAC,(Z).6) — 0" “{Gf” ﬂ”;wfbf( 00k,
- " G(Z:), €,
21; {GT’(ZZ)7€a¢} = [K {G 12 ] ] ):i}} { ( )~ }
=t RitGil hio {G3(Z0), €0 }
hio{Gi(Z),& 0} = —K; i {Gi (20, 0} My AGS (20,0} I AGS (20, 0
hie{Gi(Z).E v} = hie{Gy(Z0), 6.0}
The matrix A; is given by
Dy 0 0
0 0 0
Ali
Ai( >7 Ay = 0 0 D;, O -0 >
Agi
0 - 0 0 0
0 0 Dia 0

and

|



where

Dy = ~I(Ci 2 AAGHZ), 6.} L = M AGH(Z0), 6. ) XKy 7= 1,0 M,

S IC > )G, {@(Z»gzp}[,«ﬂ{ Gria(Z >w} h{Gr(Z),E 0 ]

paalr) = (i = som(Z, ) +Zd]\[4( e (6,(20.6)

Analogous to the strategy for ﬂbr*, in our implementation, we used numerical derivatives as

an approximation to the analytical derivatives of ps;(7) with respect to 7.

Web Appendix B: Derivation of Conditional Expectations Implied by Assumed

Mixed Models in Section 5

We derive the required conditional expectations E(Y|Y7,...,Y, X ) for j =1,...,4 implied
by model (17) in Section 5 of the main paper. The random vector ¥ = (g, ay, €1, €2, €3, €4) "

has multivariate normal distribution with mean p and variance X, where

Ea 02><4
M= </~La07,ua1701><4>T7 Y= )
O4x2 0214

Oaxp is & zero matrix with dimension (a x b), and I, is an (a X a) identity matrix. Therefore,
the distribution of (g, aq, Yy, Ys, Ys, Yy)T, conditional on X , follows multivariate normal

distribution with mean g = Ap + ¢ and variance S = AY AT where
T

02><2 02><4 1 1 1 1 T O2><1
A:IG+ s Aglz s and C:”)/X

Asr Ogxs t1 1o 13 14 Lax1

Hence, the conditional mean is given by
E(Y|Y1,Ys,Ya, Y1, X) = E(Y5V1,Ys, Y5, Yy, X)

= ATX + E(ag|Y1,Ys, Y3, Vi, X) + ts E(on Y1, Ya, Vs, Yy, X).
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To calculate the conditional mean E(ay|Y1, Ys, Y3, Yy, X), k = 0, 1, we use the following prop-
erty of multivariate normal distribution. Suppose (X{, X1)T follows a N (v, Q) distribution.

If v and 2 are partitioned correspondingly as follows:

U1 Qi1 Q9
V= and Q= 7

(%) Qa1 Qo

then (X1|Xy = a) ~ N(0,Q), where 0 = v; + Q15055 (a — vy). Straightforward application

of the above property yields
E {(0407 041)T|Y17 ey Yo, X} = fi1:2 + 51:2,3:6513;(1373;6 {(Yh Ya, Y3, YZL)T - ﬁ3:6} )

where [i4. is a column vector consisting of ath to bth entries of ji, and ia:b,m;n is the submatrix

of ¥ with rows a to b and columns m to n. Therefore the conditional expectation is
E(Y|Y1,Ys, Y3, Y;hjz) = ’YTX + (1,5) [ﬁlzz + 51:2,3:6513;(1373;6 {(Yh Yo, Y3, Yy)" — /73:6}:| .

Similarly,
E(Y|Y1,Ys, YE’M)Z) = VTX + (1,15) [ﬁm + i1:2,3:529}%73;5 {(Yl, Ya, Y3)T — ﬁ3:5}} )
B(Y|Yi, Y, X) = 77X + (1Lt5) [Fina + S129085) a0 {01, Y2)T — Fisu} ]
E(Y|Y1,X) =+"X + (1,t5) {ﬁm + 123955855 (Y1 — ﬁs::a)} ~

Next, we provide the derivation of the conditional expectations

E(Y|Yi,...,Y;, X, disy, disy, diss, dis,)

for j =1,...,4 implied by assumed linear mixed model used in the second, general coarsened
data analysis in Section 5 of the main paper; i.e., we assumed that, for r = 1, ..., 5, the data

follow the linear mixed model
Y;'T» = (p; + Oélitir + ’}/T)?i + ¢1I(7“ Z 3)diS,’2 + ¢2[(7’ = 5)diS,’4 + Eir,
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where the random effects and within-subject deviations are normal as above, and now X =
(weight,karnof,symp).

Following the same logic as above, the distribution of (v, a1, Y1, Ya, Y3, Y3)T, conditional
on ()? ,disy, disg, diss, disy), follows multivariate normal distribution with mean p* = Ay + ¢
and variance ¥ = A AT where A, j1, %, Y are the same as above, and

c= (01X2,7T)?,7T)2,7T55 + <b1dis2,7T)z + <z51dis2)T.
The conditional expectations are given as follows:

E(Y|Y1,Ys,Ys, Yy, X, disy, dis,, diss, disy)

= "X + ¢rdisy + dodisy + (1,15) [ﬁf;g + i1;2,3;6ig:é,g:ﬁ {(Y1,Y3, Y3, Yy)" — /j;:ﬁ}] ;
E(Y|Y,Ys,Ys, X, disy, diss, diss, disy)

= "X + ¢idisy + ¢odisy + (1, 15) [ﬁf;g + il;z,&si;é,gﬁ {(V1,Y5,Y3)" — 155 ] ;
E(Y|Y:,Ys, X, disy, dis,, diss, disy)

= "X + ¢idisy + ¢odisy + (1, 15) [ﬁf;g + i1;2,3:4igﬁt,3ﬁ4 {1, v2)" — 115, } ;
E(Y|Y:, X, disy, dis, diss, disy)

= "X + ¢rdisy + Godisy + (1,15) {/“’T{Q + i1:2,3:3ii:la,szza (Y1 — /73:;3)} :

Web Appendix C: Derivation of Conditional Expectations Implied by Assumed

Mixed Model in Section 6

We derive the required conditional expectations E(Y|L;) for j = 1,2 implied by the model

used in Section 6 of the main paper. The model implies that, in truth,
E (Y|Z2) =F {E(Y|Z2>Oéo,041)|zz} = "X 4 11 (X, Y1, Ya) + tapa(X, Y1, Ya),
where /J“l(Xa}/la}/Z) =F (a0|Xa}/la}/2)> and MQ(Xa}/la}/Z) =F (al|Xa}/la}/2)-
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Thus, we need to calculate the conditional distribution of ag,a; given X, Y7,Y5. The

joint density of (g, a1, X, Y1, Y2)? is given by
f(OéOaabXa}/la}/Q) = f(}/2|a0aalaX7H)f()/i|a0aa17X)f(X)f(a07al)

Therefore,

f(ao,Oél,X,Yl,Yz)
ff(ozo,ozl,X,Yl,Y2)doz0doz1
f(Ya|ao, a1, X, V1) f (Y] ao, a1, X) f(ao, 1)
[ f(Ya]aw, a1, X, Y1) f (Y1 |, 1, X) f (v, ci1)devoday

f(OéQ,Oé1|X,}/1,}/2) =

As a consequence,
f(a0>al|X7)/1>Yé) X f(}/2|a()>alaXa}/l).f(}/l|a0>alaX).f(a0>al)'

After some algebra, it can be shown that, if we let a = 099 /(011029—0%), b = —012/(011092—
0%y), ¢ = on/(onoe — 01y), (X, Y1,Y2) = e, + bpia, + (Y2 + Y1 — 297 X) /02, and
gQ(Xa Y1, }/2) = b:uoco + Clla, + (}/2 - VTX)/03> then

X, Y1,Y5) (b+1/02) — g2(X, Y1, Y3) (a + 2/07
p2(X,Y1,Ys) = E(a1|Z,Y1,Y2):g1( 1Y) ( 2/ ) — 92(X, Y1, Y5) ( Jo?)
(b+1/02)" = (c+1/02) (a +2/02)
X,Y1,Ys) — po( X, Y1, Y5) (¢ + 1/0?)
b+1/02

Y

MI(X7}/171/2> == E(OKO‘Z7Y17Y2) - g2(
Similarly, we have
E (Y|Z1) =F {E(Y|Z1,a0,a1)|zl} =X + p3(X, Y7) + tapa(X, Y1),

where u3(X,Y1) = E (o] X, Y1), and pa(X, Y1) = E (1| X,Y7). Letting d = bpa, + Cliay,
95(X, Y1) = afta, + bpa, + (Y1 — 77 X) /02, we have

(X)) -c—d-b
B (a+1/02)c—b2"
d— 1s(X,Yy) - b
(XY = Ela|X,y) = 200

c

/*’63(X7}/1) = E(O{0|X7}/1)




