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Web Appendix A: Derivation of Approximate Standard Errors Via the Sandwich

Method

Throughout, we use the notation defined in the main paper. We provide expressions required

to calculate the asymptotic variances of the three estimators for β (p× 1) considered in the

main paper: β̂ipw, β̂br∗, and β̂opt∗. Let τ be the collection of unknown parameters involved in

obtaining the estimators for β; in particular, τ = (ψT , βT )T for β̂ipw, τ = (ψT , ξT1 , ..., ξ
T
M , β

T )T

for β̂br∗ , and τ = (ψT , ξT , θT , βT )T for β̂opt∗ . The estimator for τ , τ̂ , in each case can be ob-

tained by solving a set of M-estimating equations given by
∑n

i=1
ρi(τ) = 0 (Stefanski and

Boos, 2002), where the last p entries of ρi(τ) correspond to the estimating equation for β, and

ρi(τ) is defined for each estimator below. Let An = n−1
∑n

i=1
Ai = n−1

∑n

i=1
∂/∂τ{ρi(τ)},

and Bn = n−1
∑n

i=1
ρi(τ)ρ

T
i (τ). Following standard theory, the asymptotic covariance ma-

trix of τ̂ can be approximated by the empirical sandwich matrix Vn = n−1A−1
n Bn(A

−1
n )T .

Therefore, the asymptotic variances of the three estimators can be approximated by the

lower, rightmost diagonal (p× p) submatrix of the corresponding matrix Vn. We present the

form of ρi(τ) and Ai for each of the estimators, from which the form of Vn may be calculated.

The desired diagonal submatrix of Vn may then be obtained numerically, with the required

matrix inversion carried out by standard routines.

Throughout, we assume that λr {Gr(Z), ψr}, r = 1, . . . ,M , are logistic regression models,

and ψ = (ψT1 , ..., ψ
T
M)T are estimated via separate ML fits for each r = 1, . . . ,M , where X̃i,r
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is a row vector consisting of the covariates used in the modeling of λr {Gr(Zi), ψr}, including

a “1” for the intercept term. For β̂ipw, ρi(τ) is given by

ρi(τ) =




M∑

r=1

dMC {r, Gr(Zi), ψ}

Kr {Gr(Zi), ψ}

Kr−1 {Gr(Zi), ψ}λrψ{Gr(Zi), ψ}

λr {Gr(Zi), ψ}

I(Ci = ∞)m(Zi, β)

π(∞, Zi, ψ)




=




dMC {1, G1(Zi), ψ1} X̃
T
i,1

...

dMC {M,GM(Zi), ψM} X̃T
i,M

I(Ci = ∞)m(Zi, β)

π(∞, Zi, ψ)




,

and Ai is given by

Ai =




Di,1 0 · · · · · · · · · 0

0
. . . 0 · · · · · · 0

0 0 Di,r 0 · · · 0

0 · · · 0
. . . 0 0

0 · · · · · · 0 Di,M 0

Ei,1 · · · Ei,r · · · Ei,M Di,β




,

where

Di,r = −I(Ci ≥ r)λr {Gr(Zi), ψr} [1 − λr {Gr(Zi), ψr}] X̃
T
i,rX̃i,r, r = 1, . . . ,M,

Ei,r =
I(Ci = ∞)m(Zi, β)

π(∞, Zi, ψ)
λr {Gr(Zi), ψr} X̃i,r, r = 1, . . . ,M,

Di,β =
I(Ci = ∞)

π(∞, Zi, ψ)
mβ(Zi, β),

and mβ(Zi, β) is a column vector of partial derivatives of m(Zi, β) with respect to β.

2



We implemented β̂br∗ as described in Bang and Robins (2005); i.e., we added as a covari-

ate K̂−1
r

{
Gr(Z), ψ̂1, . . . , ψ̂r

}
in the conditional mean functions h∗r{Gr(Z), ξr} corresponding

to a generalized linear model with canonical link, where K̂−1
r

{
Gr(Z), ψ̂1, . . . , ψ̂r

}
is an es-

timate for the true cumulative hazard K−1
r {Gr(Z), ψ1, . . . , ψr}, r = 1, . . . ,M . We write the

new conditional mean function including additional covariate K̂−1
r

{
Gr(Z), ψ̂1, . . . , ψ̂r

}
as

h∗r{Gr(Z), ψ1, ..., ψr, ξr, β}. For this estimator, ρi(τ) is given by

ρi(τ) =




dMC {1, G1(Zi), ψ1} X̃
T
i,1

...

dMC {M,GM(Zi), ψM} X̃T
i,M

I(Ci > 1) [h∗2 {G2(Zi), ψ1, ψ2, ξ2, β} − h∗1 {G1(Zi), ψ1, ξ1, β}]

×h∗
1,ψ1,ξ1

{G1(Zi), ψ1, ξ1, β}

...

I(Ci > M) [m(Zi, β) − h∗M {GM(Zi), ψ, ξM , β}]

×h∗M,ψ,ξM
{GM(Zi), ψ, ξM , β}

h∗1 {G1(Zi), ψ1, ξ1, β}




,

where h∗r,ψ1,...,ψr,ξr
{Gr(Zi), ψ1, ..., ψr, ξr, β} is the column vector of partial derivatives of

h∗r {Gr(Zi), ψ1, ..., ψr, ξr, β} with respect to ψ1, ..., ψr, ξr, r = 1, ...,M .

The matrix Ai is given by

Ai =




A1i

A2i

A3i



, A1i =




Di,1 0 · · · · · · · · · 0

0
. . . 0 · · · · · · 0

0 0 Di,r 0 · · · 0

0 · · · 0
. . . 0 0

0 · · · · · · 0 Di,M 0




,
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and A3i =

(
F1,i 0 · · · 0 F2,i 0 · · · 0 F3,i

)
,

where

Di,r = −I(Ci ≥ r)λr {Gr(Zi), ψr} [1 − λr {Gr(Zi), ψr}] X̃
T
i,rX̃i,r, r = 1, . . . ,M,

F1,i = h∗1,ψ1
{G1(Zi), ψ1, ξ1, β} , F2,i = h∗1,ξ1 {G1(Zi), ψ1, ξ1, β} ,

F3,i = h∗1,β {G1(Zi), ψ1, ξ1, β} ;

i.e., F1,i, F2,i, F3,i are partial derivatives of h∗1 {G1(Zi), ψ1, ξ1, β} with respect to ψ1, ξ1, and

β, respectively. The A2i term involves the partial derivatives of the column vector

ρ2,i(τ) =




I(Ci > 1) [h∗2 {G2(Zi), ψ1, ψ2, ξ2, β} − h∗1 {G1(Zi), ψ1, ξ1, β}]

×h∗1,ψ1,ξ1
{G1(Zi), ψ1, ξ1, β}

...

I(Ci > M) [m(Zi, β) − h∗M {GM(Zi), ψ, ξM , β}]

×h∗M,ψ,ξM
{GM(Zi), ψ, ξM , β}




with respect to τ . Often in practice, it is cumbersome to obtain the analytical derivatives

of ρ2,i(τ) with respect to τ . In our implementation, we used numerical derivatives as an

approximation to the analytical derivatives. For example, to calculate the derivative of

ρ2,i(τ) with respect to the kth element of τ , we used a one-sided numerical approximation

of the form {ρ2,i(τ + ǫ1k) − ρ2,i(τ)} /ǫ for small enough ǫ > 0, where 1k is a column vector

with 1 on the kth entry and all other entries 0.
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For β̂opt∗ , ρi(τ) is given by

ρi(τ) =




dMC {1, G1(Zi), ψ1} X̃
T
i,1

...

dMC {M,GM(Zi), ψM} X̃T
i,M

∑M

r=1
I(Ci > r)q̃r

{
Gr(Zi), ξ̃, ψ

}[
h̃r+1

{
Gr+1(Zi), ξ̃, ψ

}
− h̃r

{
Gr(Zi), ξ̃, ψ

}]

I(Ci = ∞)m(Zi, β)

π(∞, Zi, ψ)
+

M∑

r=1

dMc {r, Gr(Zi), ψ}

Kr {Gr(Zi), ψ}
hr {Gr(Zi), ξ}




,

where

h̃r{Gr(Zi), ξ̃} = hr {Gr(Zi), ξ} − θT
Kr−1 {Gr(Zi), ψ}λrψ{Gr(Zi), ψ}

λr {Gr(Zi), ψ}
,

q̃r

{
Gr(Zi), ξ̃, ψ

}
= −[Kr {Gr(Zi), ψ}]

−1

r∑

j=1

λj {Gj(Zi), ψ}

Kj {Gj(Zi), ψ}




h̃jξ

{
Gj(Zi), ξ̃, ψ

}

h̃jθ

{
Gj(Zi), ξ̃, ψ

}


 ,

h̃jθ

{
Gj(Zi), ξ̃, ψ

}
= −Kj−1 {Gj(Zi), ψ}λjψ {Gj(Zi), ψ} /λj {Gj(Zi), ψ} ,

h̃jξ

{
Gj(Zi), ξ̃, ψ

}
= hjξ {Gj(Zi), ξ, ψ} .

The matrix Ai is given by

Ai =




A1i

A2i


 , A1i =




Di,1 0 · · · · · · · · · 0

0
. . . 0 · · · · · · 0

0 0 Di,r 0 · · · 0

0 · · · 0
. . . 0 0

0 · · · · · · 0 Di,M 0




,

and

A2i =

(
∂/∂τ {ρ3,i(τ)}

)
,
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where

Di,r = −I(Ci ≥ r)λr {Gr(Zi), ψr} [1 − λr {Gr(Zi), ψr}] X̃
T
i,rX̃i,r, r = 1, . . . ,M,

ρ3,i(τ) =




∑M

r=1
I(Ci > r)q̃r

{
Gr(Zi), ξ̃, ψ

}[
h̃r+1

{
Gr+1(Zi), ξ̃, ψ

}
− h̃r

{
Gr(Zi), ξ̃, ψ

}]

I(Ci = ∞)m(Zi, β)

π(∞, Zi, ψ)
+

M∑

r=1

dMc {r, Gr(Zi), ψ}

Kr {Gr(Zi), ψ}
hr {Gr(Zi), ξ}


 .

Analogous to the strategy for β̂br∗ , in our implementation, we used numerical derivatives as

an approximation to the analytical derivatives of ρ3,i(τ) with respect to τ .

Web Appendix B: Derivation of Conditional Expectations Implied by Assumed

Mixed Models in Section 5

We derive the required conditional expectations E(Y |Y1, . . . , Yj, X̃) for j = 1, . . . , 4 implied

by model (17) in Section 5 of the main paper. The random vector Ψ = (α0, α1, e1, e2, e3, e4)
T

has multivariate normal distribution with mean µ and variance Σ, where

µ = (µα0, µα1, 01×4)
T , Σ =




Σα 02×4

04×2 σ2
eI4


 ,

0a×b is a zero matrix with dimension (a× b), and Ia is an (a× a) identity matrix. Therefore,

the distribution of (α0, α1, Y1, Y2, Y3, Y4)
T , conditional on X̃, follows multivariate normal

distribution with mean µ̃ = Aµ+ c and variance Σ̃ = AΣAT , where

A = I6 +




02×2 02×4

A21 04×4


 , A21 =




1 1 1 1

t1 t2 t3 t4




T

, and c = γT X̃




02×1

14×1


 .

Hence, the conditional mean is given by

E(Y |Y1, Y2, Y3, Y4, X̃) = E(Y5|Y1, Y2, Y3, Y4, X̃)

= γTX + E(α0|Y1, Y2, Y3, Y4, X̃) + t5E(α1|Y1, Y2, Y3, Y4, X̃).
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To calculate the conditional mean E(αk|Y1, Y2, Y3, Y4, X̃), k = 0, 1, we use the following prop-

erty of multivariate normal distribution. Suppose (XT
1 , X

T
2 )T follows a N(υ,Ω) distribution.

If υ and Ω are partitioned correspondingly as follows:

υ =




υ1

υ2


 and Ω =




Ω11 Ω12

Ω21 Ω22


 ,

then (X1|X2 = a) ∼ N(ῡ,Ω), where ῡ = υ1 + Ω12Ω
−1

22 (a − υ2). Straightforward application

of the above property yields

E
{

(α0, α1)
T |Y1, ..., Y4, X̃

}
= µ̃1:2 + Σ̃1:2,3:6Σ̃

−1

3:6,3:6

{
(Y1, Y2, Y3, Y4)

T − µ̃3:6

}
,

where µ̃a:b is a column vector consisting of ath to bth entries of µ̃, and Σ̃a:b,m:n is the submatrix

of Σ̃ with rows a to b and columns m to n. Therefore the conditional expectation is

E(Y |Y1, Y2, Y3, Y4, X̃) = γT X̃ + (1, t5)
[
µ̃1:2 + Σ̃1:2,3:6Σ̃

−1

3:6,3:6

{
(Y1, Y2, Y3, Y4)

T − µ̃3:6

}]
.

Similarly,

E(Y |Y1, Y2, Y3, X̃) = γT X̃ + (1, t5)
[
µ̃1:2 + Σ̃1:2,3:5Σ̃

−1

3:5,3:5

{
(Y1, Y2, Y3)

T − µ̃3:5

}]
,

E(Y |Y1, Y2, X̃) = γT X̃ + (1, t5)
[
µ̃1:2 + Σ̃1:2,3:4Σ̃

−1

3:4,3:4

{
(Y1, Y2)

T − µ̃3:4

}]
,

E(Y |Y1, X̃) = γT X̃ + (1, t5)
{
µ̃1:2 + Σ̃1:2,3:3Σ̃

−1

3:3,3:3 (Y1 − µ̃3:3)
}
.

Next, we provide the derivation of the conditional expectations

E(Y |Y1, . . . , Yj, X̃, dis1, dis2, dis3, dis4)

for j = 1, . . . , 4 implied by assumed linear mixed model used in the second, general coarsened

data analysis in Section 5 of the main paper; i.e., we assumed that, for r = 1, ..., 5, the data

follow the linear mixed model

Yir = α0i + α1itir + γT X̃i + φ1I(r ≥ 3)disi2 + φ2I(r = 5)disi4 + eir,
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where the random effects and within-subject deviations are normal as above, and now X̃ =

(weight,karnof,symp).

Following the same logic as above, the distribution of (α0, α1, Y1, Y2, Y3, Y4)
T , conditional

on (X̃, dis1, dis2, dis3, dis4), follows multivariate normal distribution with mean µ̃∗ = Aµ+ c̃

and variance Σ̃ = AΣAT , where A, µ,Σ, Σ̃ are the same as above, and

c̃ =
(
01×2, γ

T X̃, γT X̃, γT X̃ + φ1dis2, γ
T X̃ + φ1dis2

)T
.

The conditional expectations are given as follows:

E(Y |Y1, Y2, Y3, Y4, X̃, dis1, dis2, dis3, dis4)

= γT X̃ + φ1dis2 + φ2dis4 + (1, t5)
[
µ̃∗

1:2 + Σ̃1:2,3:6Σ̃
−1

3:6,3:6

{
(Y1, Y2, Y3, Y4)

T − µ̃∗

3:6

}]
,

E(Y |Y1, Y2, Y3, X̃, dis1, dis2, dis3, dis4)

= γT X̃ + φ1dis2 + φ2dis4 + (1, t5)
[
µ̃∗

1:2 + Σ̃1:2,3:5Σ̃
−1

3:5,3:5

{
(Y1, Y2, Y3)

T − µ̃∗

3:5

}]
,

E(Y |Y1, Y2, X̃, dis1, dis2, dis3, dis4)

= γT X̃ + φ1dis2 + φ2dis4 + (1, t5)
[
µ̃∗

1:2 + Σ̃1:2,3:4Σ̃
−1

3:4,3:4

{
(Y1, Y2)

T − µ̃∗

3:4

}]
,

E(Y |Y1, X̃, dis1, dis2, dis3, dis4)

= γT X̃ + φ1dis2 + φ2dis4 + (1, t5)
{
µ̃∗

1:2 + Σ̃1:2,3:3Σ̃
−1

3:3,3:3 (Y1 − µ̃∗

3:3)
}
.

Web Appendix C: Derivation of Conditional Expectations Implied by Assumed

Mixed Model in Section 6

We derive the required conditional expectations E(Y |Lj) for j = 1, 2 implied by the model

used in Section 6 of the main paper. The model implies that, in truth,

E
(
Y |L2

)
= E

{
E(Y |L2, α0, α1)|L2

}
= γTX + µ1(X, Y1, Y2) + t3µ2(X, Y1, Y2),

where µ1(X, Y1, Y2) = E (α0|X, Y1, Y2), and µ2(X, Y1, Y2) = E (α1|X, Y1, Y2).
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Thus, we need to calculate the conditional distribution of α0, α1 given X, Y1, Y2. The

joint density of (α0, α1, X, Y1, Y2)
T is given by

f(α0, α1, X, Y1, Y2) = f(Y2|α0, α1, X, Y1)f(Y1|α0, α1, X)f(X)f(α0, α1)

Therefore,

f(α0, α1|X, Y1, Y2) =
f(α0, α1, X, Y1, Y2)∫

f(α0, α1, X, Y1, Y2)dα0dα1

=
f(Y2|α0, α1, X, Y1)f(Y1|α0, α1, X)f(α0, α1)∫

f(Y2|α0, α1, X, Y1)f(Y1|α0, α1, X)f(α0, α1)dα0dα1

.

As a consequence,

f(α0, α1|X, Y1, Y2) ∝ f(Y2|α0, α1, X, Y1)f(Y1|α0, α1, X)f(α0, α1).

After some algebra, it can be shown that, if we let a = σ22/(σ11σ22−σ
2
12), b = −σ12/(σ11σ22−

σ2
12), c = σ11/(σ11σ22 − σ2

12), g1(X, Y1, Y2) = aµα0
+ bµα1

+ (Y2 + Y1 − 2γTX)/σ2
e , and

g2(X, Y1, Y2) = bµα0
+ cµα1

+ (Y2 − γTX)/σ2
e , then

µ2(X, Y1, Y2) = E(α1|Z, Y1, Y2) =
g1(X, Y1, Y2) (b+ 1/σ2

e) − g2(X, Y1, Y2) (a+ 2/σ2
e)

(b+ 1/σ2
e)

2 − (c+ 1/σ2
e) (a+ 2/σ2

e)
,

µ1(X, Y1, Y2) = E(α0|Z, Y1, Y2) =
g2(X, Y1, Y2) − µ2(X, Y1, Y2) (c+ 1/σ2

e)

b+ 1/σ2
e

.

Similarly, we have

E
(
Y |L1

)
= E

{
E(Y |L1, α0, α1)|L1

}
= γTX + µ3(X, Y1) + t3µ4(X, Y1),

where µ3(X, Y1) = E (α0|X, Y1), and µ4(X, Y1) = E (α1|X, Y1). Letting d = bµα0
+ cµα1

,

g3(X, Y1) = aµα0
+ bµα1

+ (Y1 − γTX)/σ2
e , we have

µ3(X, Y1) = E(α0|X, Y1) =
g3(X, Y1) · c− d · b(
a+ 1/σ2

e

)
c− b2

,

µ4(X, Y1) = E(α1|X, Y1) =
d− µ3(X, Y1) · b

c
.
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