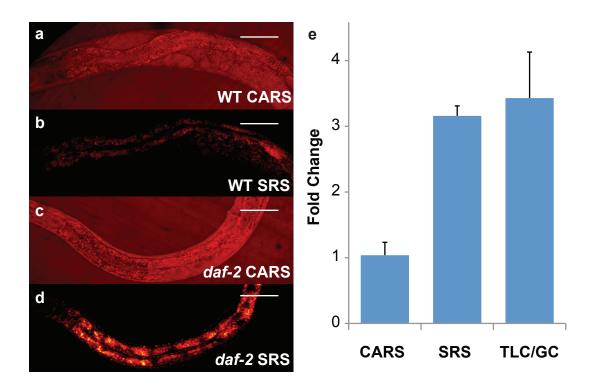
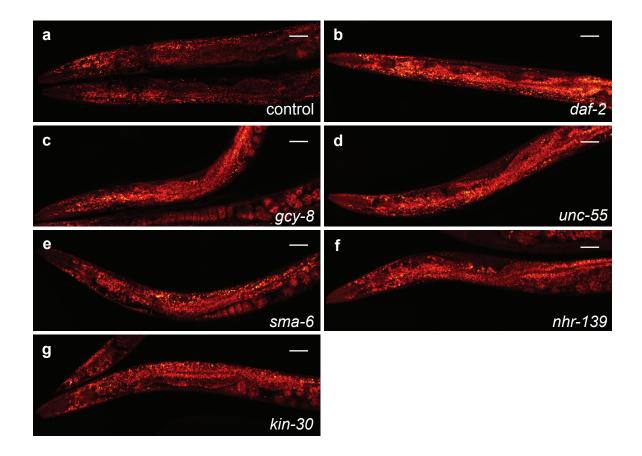


Supplementary Figure 1. Co-localization between BODIPY and SRS signals in lipid droplets in mammalian 293 cells.


- a) BODIPY staining reveals lipid droplets in living cells.
- **b**) SRS visualization of lipid storage in lipid droplets.
- c) Overlap between BODIPY and SRS signals. Scale bar, 1µm in all figures

Supplementary Figure 2. Image artifact of CARS due to lipid unrelated structure.

- **a**) CARS signals are significantly affected by the shape of imaging samples. As pointed by arrows, the dark regions low in CARS signals are artifact caused by the intestine structure.
- **b**) SRS imaging of the same animal displays a much more homogeneous pattern along the gut.


Scale bar, 100µm in both figures

Supplementary Figure 3. Quantification of fat storage in the daf-2(e1370) mutants based on CARS microscopy.

- a) CARS imaging of fat storage in a wild type adult.
- **b**) SRS imaging of fat storage in the same animal in (a).
- **c**) CARS imaging of fat storage in the *daf-2(e1370)* mutant.
- **d**) SRS imaging of the same *daf-2* mutant in (c).
- e) CARS microscopy based quantification failed to detect more than 3-fold induction of fat storage in the daf-2 mutant.

Scale bar, 100µm in all figures

Supplementary Figure 4. New genetic regulators of fat storage identified using label-free SRS microscopy through RNAi screening.

- **a**) Control animals fed with empty vector containing bacteria show normal fat content levels.
- **b-g**) New genes were identified whose inactivation signficantly increases fat storage. p<0.0001

Scale bar, 100µm in all figures.

Supplementary Table 1. Summary of newly identified genes responsible for fat storage.

Gene	Brief Description	Expression Pattern	Human	SRS Increase ± STD	p value
daf-2	Insulin/IGF-1 receptor	Neuron, Muscle, Intestine, etc	Yes	0.56 ± 0.16	<0.0001
gcy-28	Natriuretic peptide receptor	Neuron, Muscle, Intestine, etc	Yes	0.34 ± 0.17	<0.0001
B0252.1	FGF receptor	Unknown	Yes	0.54 ± 0.15	<0.0001
sma-6	Type I TGF-beta receptors	Hypodermis, Intestine, Muscle, etc	Yes	0.41 ± 0.03	<0.0001
R09D1.12	Protein kinase	Unknown	Yes	0.46 ± 0.12	<0.0001
kin-30	Tyrosine Kinase	Unknown	Yes	0.26 ± 0.06	<0.0001
unc-55	COUP transcription factor	Neuron, Muscle	Yes	0.37 ± 0.13	<0.0001
nhr-123	nuclear hormone receptor	Neuron, Intestine, Pharynx	Yes	0.46 ± 0.16	<0.0001
nhr-139	nuclear hormone receptor	Unknown	Yes	0.37 ± 0.10	<0.0001
nhr-74	nuclear hormone receptor	Seam cells	Yes	0.21 ± 0.10	0.001

[&]quot;Expression Pattern" column indicates the tissue where each gene is expressing normally. The information is collected from the wormbase www.wormbase.org.

All the experiments were performed twice independently.

[&]quot;Human" column indicates whether each gene has a conserved homolog in human.