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A Interpretation and estimation of the treat-

ment contrast when the two separate pa-

rameters are not identifiable

When the condition in section 4.1 is not fulfilled, i.e. when E(CB
i |Xi) =

kE(CA
i |Xi), the estimable contrast δ = ψA − kψB deserves more discussion.

For the subpopulation Xi = x with E(CA
i |Xi = x) = c̄x, δc̄x reflects the

expected difference in response to assigned treatment A versus B (i.e. the

ITT effect at a given x-level). As an example, suppose all women are fully

compliant to A and on average 50% compliant to B, while all men are on

average 50% compliant to A and 25% compliant to B. Adjusting for gender

only, k = 0.5 and the effect of assigning A instead of B would be δ for women

and 0.5δ for men.

For additional causal meaning one needs additional assumptions. For
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instance, if k = 1 and we assume the model of form 2.3 (with γ’s linear as

in equation 4.1), δ can be interpreted as the difference in average treatment

effects for the subgroup CA
i = CB

i = 1. Similarly, δc can be interpreted as

the difference in the subgroup CA
i = CB

i = c.

Estimator 3.4 can estimate δ as long as the inverse {G′PXZ}−1 exists in

the sample. Although the two distinct parameter estimates may have a large

variance, the contrast δ̂ often has reasonable precision (as demonstrated in

our simulation study in section B). The parameter k can be estimated as the

ratio of average compliance summaries on the two arms.

Alternatively, define Hi = Yi − δRA
i C

A
i with E(Hi|Xi) = E(Y B

i |Xi). The

causal estimand then compares outcomes for individuals at given levels of

treatment A with their average response if assigned to B, regardless of po-

tential compliance with treatment B. The estimating equations for δ̂, derived

from equation 2.5, now become equivalent to those for the SMM analysis of

a placebo-controlled trial (Goetghebeur and Lapp, 1997; Fischer-Lapp and

Goetghebeur, 1999), with B the reference treatment (“placebo”). The func-

tion qopt in 2.5 is then directly estimable from a regression of Y B
i on Xi and

estimating gopt involves regressing CA
i on Xi. The contrast δ is now estimated

directly without need to estimate k beforehand (although the latter may be

useful for interpretation purposes).

When instead A is taken as the reference, one estimates δ∗ = ψB − 1
k
ψA

with correspondingly reversed interpretation. The two choices of reference

give 2 different (although asymptotically equivalent) estimators. The choice

of reference is naturally driven by what is considered the standard treatment.

Finally, if one is particularly interested in the actual parameters ψA and

ψB even though only δ is estimable, one may resort to a sensitivity analysis

as the implied equality ψB = (ψA − δ)/k leads to possible values of ψB for a

range of realistic values of ψA, given estimates of k and δ.
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B Additional details of the SMM analysis of

the trial comparing two anti-depressants

B.1 Selection of baseline covariates

Eight baseline predictors that were significant at the 0.01 level in multivariate

regression models for either of the two compliance measures or the outcome

(in the whole dataset or in either arm separately) were selected:

• ADCQ questions. Each question was formulated as a statement, where

respondents had to indicate their level of agreement on a 4-point scale.

The following statements were significantly associated with subsequent

treatment adherence and/or the final Hamilton score of the patient:

– “Antidepressants can change my personality”

– “When I am more depressed, I can take more of the prescribed

dose”

– “Skipping certain days prevents the body from becoming resistant

against or used to the anti-depressant”

– “Skipping certain days prevents the body from becoming depen-

dent on the anti-depressant”

– “I am satisfied with the explanations my physician gave me about

my depression”

• Other covariates:

– Compliance at the end of the run-in period (binary indicator of

taking a pill a day before Visit 2)

– WHO well-being score: sum of scores 2 and 3 at Visit 2 (a score

from 0 to 5, indicating level of agreement with the statements: “I

feel calm and peaceful” and “I am full of energy”)

– Hamilton score at Visit 2 (baseline)
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Hamilton Score at Visit 2 was the strongest predictor of the final Hamilton

score, whereas run-in compliance was the strongest predictor of compliance

summaries.

The resulting predictions of the two expected compliance summaries have

a low empirical correlation between trial arms (Pearson’s coefficient of corre-

lation being -0.13, 95%CI -0.36 to 0.11, for CA(2, 8) and CB(2, 8)), hence the

identifiability conditions of a SMM with one parameter per arm are fulfilled.

However, the two compliance variables C(2, 8) and Cw(8) depend on X in a

similar fashion, so we cannot expect to distinguish the effects of these two

variables when estimating all 4 parameters.

B.2 Missing value handling

We used multiple imputation for the missing Hamilton scores, (Rubin, 1987)

assuming the data are missing at random (MAR). With approximate nor-

mality of the Hamilton scores, we imputed missing values from their es-

timated conditional distribution, given observed Hamilton scores, baseline

covariates and compliance summaries. This was repeated 30 times. Each

SMM was fitted on the 30 imputed datasets and the resulting parameter

estimates and estimated variance-covariance matrices were combined using

Rubin’s rules (Rubin, 1987), to produce estimates of the SMM parame-

ters and their standard errors (R packages norm and mitools were used,

http://www.r-project.org/).

The null hypothesis that all parameters in the model are 0 can in complete

data sets be tested by a Wald test, assuming approximate normality of the

parameter estimates. With multiple imputation of the missing data, the

Wald test is replaced by an F-test, with degrees of freedom given by Reiter

(2007).

C A simulation study

To study the properties of the SMM estimator, we generated datasets ac-

cording to the following rules:
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1. First, 3 “known” and 1 “unknown” independent baseline characteris-

tics, X1, X2, X3 and U were generated, each having a U(−0.5; 0.5)

distribution (uniform from -0.5 to 0.5, chosen to ensure that generated

compliance measures and outcomes lay within realistic limits).

2. The two compliance summaries CA and CB, representing percentages

of prescribed drug taken by a patient while randomized to treatment

A or B, respectively, were generated to satisfy:

CA = cAx + 0.2U + 0.3εAc with cAx = 0.6 + 0.1X1 + 0.4X2

CB = cBx + 0.2U + 0.3εBc ,

where εAc and εBc were independent U(−0.5; 0.5) error terms and cBx was

specified in five ways:

(a) cBx = 0.6 + 0.3X1 + 0.2X2. This corresponds to differential predic-

tion of CA and CB, with Cor[E(CA|X),E(CB|X)] ≈ 0.75.

(b) cBx = 0.6 + 0.2X1 + 0.3X2. Now Cor[E(CA|X),E(CB|X)] ≈ 0.95.

(c) cBx = 0.15 + cAx . Arm B patients have on average a 15% higher

compliance, a difference which is not associated with observed

baseline characteristics.

(d) cBx = 1.25cAx . Now compliance on arm B tends to be 1.25 times

that on arm A. Note that mean difference in compliance sum-

maries is 0.15, as in (c).

(e) cBx = cAx .

3. The potential treatment-free response Y 0 was generated to satisfy

Y 0 = 5 + 2X2 + 3X3 + 2U + ε0,

with ε0 being an independent normal N(0, 0.7) variate. Note that the

baseline covariate X1 predicts compliance but not outcome, whereas

covariate X3 predicts just the outcome.
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4. The (potential) responses to treatment A and B were generated to

satisfy
Y A = Y 0 + 7CA + εA,

Y B = Y 0 + 9CB + εB,

with εA and εB being independent N(0, 0.7) error terms (results were

unchanged when εA and εB were correlated or even equal).

5. The randomized assignment RA = 1−RB was an independent binomial

distribution Bin(1, 0.5). The “observed” variables were defined as

Y = Y ARA + Y BRB; CA
obs = CARA; CB

obs = CBRB.

6. For scenario (f) in Table 1, the data was generated exactly as under

scenario (a), but now deleting the values of Y where M = 1, with M

generated to satisfy: logit[P (M = 1|X)] = 0.5X3−X2−1.3. (logit(p) =

p/(1− p)). This led to about 30% of the values of Y being missing (as

in the depression trial) and satisfying the MAR assumption.

Simulations were carried out with total sample sizes n = 100, 400 and 2000

and for all scenarios (a)–(f). For each simulated dataset under the scenar-

ios (a)–(e), the parameters ψA and ψB were estimated together with their

variance-covariance matrix, using the algorithm described in Section 3. Based

on these estimates, also the difference ψA − ψB and its standard error were

found.

Under the scenario (f) we used a multiple imputation procedure as in

the depression analysis (Section B.2). Specifically, we imputed each missing

outcome 30 times by sampling from their estimated conditional distribution,

given the three baseline covariates, randomization indicator and the compli-

ance summary. The SMM was then fitted on each of the 30 imputed datasets

and the resulting parameter estimates and estimated variance-covariance ma-

trices were combined using Rubin’s rules (Rubin, 1987).

The results are shown in Table 1. Since results for the second param-

eter ψB were similar to those for ψA (due to equal error variances in the

data-generating models for compliance and outcomes on both arms) they are

omitted.
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As expected, the estimator behaves quite well when expected compliance

measures, given baseline characteristics, are different with correlation less

than 1 (scenarios a and b). When the correlation reaches 0.95, the mean

squared error increases (as compared to the correlation of 0.75) and there is

an indication of a small finite sample bias with small sample sizes. However,

the magnitude of such bias is about 10 times smaller than the standard

deviation of the estimates. The estimated standard error of the estimates

approximates well the empirical standard deviation found from simulations.

The resulting 95% confidence intervals (assuming asymptotic normality of

the parameter estimates) have coverage probability close to 0.95.

Scenarios (c), (d) and (e) correspond to cases where the correlation be-

tween the two expected compliance summaries is 1. When the two summaries

differ by an additive constant (scenario c), the estimate is still reasonably pre-

cise for sample size of 2000 and might also work for n = 400. More imprecise

estimates are obtained when the two summaries differ by a multiplicative

constant or are equal (scenarios d and e): in these cases one is unlikely to

identify the two distinct parameters. Overly large standard errors lead to

conservative confidence intervals.

The difference between causal parameters ψA and ψB is always estimated

with much better precision than the two distinct parameters. However, the

precision of the estimated difference is considerably decreased under scenarios

(c) and (d), especially when the sample size is small.

Under scenario (e), when the two expected compliance summaries are

equal, one can estimate the difference δ = ψA − ψB directly using the SMM

methodology for placebo-controlled trials, as described in Section A. Simula-

tion results of the direct method compare favorably with the estimates from

the 2-stage procedure in Table 1. Estimated mean squared errors are very

close, but the standard errors are less conservative, observed coverage of the

95% confidence interval being 93%, 95% and 95% for sample sizes 100, 400

and 2000, respectively.

The direct method enables estimation of the contrast δ = ψA − kψB

under scenario (d). With ψA = 7, ψB = 9 and k = 1.25, the true value of

δ is −4.25. In our simulated datasets the precision of δ̂ was very close to
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the precision under scenario (e). However, if the direct method is mistakenly

used under scenario (c), which in practice may be hard to distinguish from

(d), the estimated quantity would lack any meaningful interpretation.

In practice it would usually be safe to obtain the distinct point estimates

first and then, based on their estimated variance-covariance matrix, the con-

trasts of interest. Only if there is sufficient certainty that the two expected

compliance summaries are proportional (or equal), one could consider using

the direct method to estimate the contrast δ.

Under scenario (f), missing data leads to somewhat increased MSE of the

estimates using multiple imputation (as expected), but no biases are observed

and coverage probabilities are close to the complete data scenario. As the

sample size 100 is close to the sample size in the depression trial, this adds

confidence in the validity of the data analysis results in Section 5.3, if the

MAR assumption is valid.

We also compared the estimated SMM difference ψ̂A − ψ̂B with the ITT

difference Ê(Y A − Y B|X).

First note that the two approaches test different hypotheses: while the

SMM estimate can be interpreted as the difference in treatment efficacies for

full compliers, the ITT analysis estimates and tests the effect of treatment A

assignment compared to B, capturing at the same time both compliance and

efficacy differences (without enabling distinction between the two aspects).

When the average compliance levels are the same for treatments A and B,

as under scenarios (a), (b), (e) and (f), the ITT null hypothesis can be true

only when the SMM null hypothesis is and vice versa. So it is of interest to

compare the power of the two methods to detect a departure from the null.

The results indicate that under scenarios (a), (b) and (f), the SMM ap-

proach may lead to better power, compared to the ITT approach, to detect a

significant treatment difference, with the power being comparable for the two

approaches under scenario (e), where E(CA|X) = E(CB|X). Under scenar-

ios (c) and (d) the ITT and SMM parameters and corresponding estimates

of the difference between the two treatments have opposite directions, as

Treatment B has higher average compliance level, but lower average efficacy

for full compliers. Although in all these settings, ITT approach provides a
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Table 1: Simulation results on estimating the parameter ψA, the difference ψA − ψB

and the ITT difference E(Y A−Y B |X), under 6 scenarios (a)–(f) and with three different
sample sizes n (number of simulations is 1000 for each case): mean and standard error
(SE) of the estimates over all simulated datasets, coverage of the asymptotic 95% Confi-
dence Interval, power to detect a significant difference at 5% significance level. The true
values are ψA = 7 and ψB = 6.

parameter: SMM: ψ̂A SMM: ψ̂A − ψ̂B ITT: E(Y A − Y B |X)
scenario n mean SE coverage mean SE coverage power mean SE power
(a) 100 7.16 3.15 0.96 1.01 0.40 0.96 0.68 0.60 0.31 0.50

400 7.05 1.44 0.94 1.00 0.19 0.96 1.00 0.59 0.15 0.98
2000 7.02 0.61 0.95 1.00 0.09 0.94 1.00 0.60 0.07 1.00

(b) 100 7.87 6.40 0.98 1.01 0.43 0.96 0.61 0.61 0.31 0.54
400 7.17 2.92 0.97 1.00 0.19 0.97 1.00 0.60 0.15 0.98
2000 7.00 1.24 0.96 1.00 0.08 0.96 1.00 0.60 0.07 1.00

(c) 100 8.72 8.37 0.99 1.33 1.71 0.98 0.20 -0.31 0.31 0.20
400 7.59 5.27 0.98 1.12 1.03 0.98 0.32 -0.30 0.15 0.52
2000 7.06 2.24 0.96 1.01 0.44 0.96 0.66 -0.30 0.07 1.00

(d) 100 9.89 11.13 0.98 1.58 2.27 0.98 0.14 -0.31 0.30 0.18
400 10.20 10.36 0.98 1.65 2.07 0.98 0.15 -0.30 0.15 0.51
2000 9.88 12.16 0.99 1.57 2.45 0.99 0.14 -0.30 0.06 1.00

(e) 100 9.92 9.98 0.98 1.01 0.47 0.98 0.52 0.61 0.30 0.52
400 9.88 10.57 0.99 0.99 0.27 0.98 0.90 0.60 0.15 0.98
2000 9.94 9.15 0.98 1.00 0.10 0.99 0.99 0.60 0.06 1.00

(f) 100 7.28 4.37 0.98 1.01 0.53 0.95 0.48 0.60 0.38 0.42
400 7.09 1.91 0.96 0.99 0.24 0.96 0.98 0.59 0.18 0.92
2000 7.06 0.79 0.96 0.99 0.11 0.96 1.00 0.60 0.08 1.00

valid comparison of assignment effects of treatments A and B, a SMM analy-

sis, complemented by a comparison of average compliance levels, would give

more insight into the nature of action of the two treatments.

D Extensions

D.1 Allowing for contamination

Contamination means that some patients randomized to treatment A actu-

ally get treatment B (instead of A or in addition to A) and/or vice versa.

Let us assume now that treatment dosage summaries C
A(A)
i , C

B(A)
i , C

B(B)
i

and C
A(B)
i are available, with C

J(K)
i summarizing the amount of treatment J
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received while being randomized to treatment K. One may assume now:

E[Y A
i −ψA(A)C

A(A)
i −ψB(A)C

B(A)
i |Xi] = E[Y B

i −ψB(B)C
B(B)
i −ψA(B)C

A(B)
i |Xi].

(D.1)

This is again a special case of a SMM with multivariate compliance sum-

maries. One often assumes the effect of received treatment to be independent

of randomised group, i.e. ψA(B) = ψA(A) and ψB(A) = ψB(B). In this case the

model can be rewritten as

E[Y A
i − ψA(A)DA

i |Xi] = E[Y B
i − ψB(B)DB

i |Xi],

with DA
i = C

A(A)
i −CA(B)

i and DB
i = C

B(B)
i −CB(A)

i , interpreted as the excess

dose of the treatment (A or B) received when assigned to the corresponding

treatment arm. Although DA
i and DB

i are not directly observed, the ran-

domization assumption allows for estimation of E(DA
i |Xi) and E(DB

i |Xi).

To gain in causal interpretation, one might in D.1 additionally condition

on the entire vector of potential compliance and contamination summaries

Ci = (C
A(A)
i , C

B(A)
i , C

B(B)
i , C

A(B)
i ), as in equation 2.3.

This methodology can also be used for estimation of the causal effect of

treatment in placebo-controlled trials with noncompliance and contamina-

tion. If treatment B represents a placebo without any dose effect, one can

simplify (D.1) by taking ψB(B) = ψB(A) = 0. Allowing ψA(B) and ψA(A)

to be different would make sense in trials where contamination occurs in a

somewhat different way to compliance with the active treatment (e.g. later

start of the therapy, different product with the same active compound used,

contaminators being unblinded). If, however, ψA(B) = ψA(A) is assumed, the

model becomes equivalent to a SMM for placebo-controlled trials, described

by Goetghebeur and Lapp (1997) and Fischer-Lapp and Goetghebeur (1999),

with DA
i used instead of the compliance summary.

D.2 Relaxing the exclusion restriction

The exclusion restriction assumes that for noncompliers the outcome does

not depend on the randomized arm:

E(Y A
i − Y 0

i |CA
i ≡ 0,Xi) = E(Y B

i − Y 0
i |CB

i ≡ 0,Xi) = 0.
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While this is a natural assumption in a double-blind trial, in other settings

one may need to allow for a direct effect of being randomized to a certain arm,

regardless of compliance. Examples include open-label trials, but also cases

where CA
i and CB

i do not capture all aspects of actually received treatment

so that even when CA
i ≡ CB

i ≡ 0, there are some components of therapy still

received by patients that can differ between arms. It is known that wrongly

assuming the exclusion restriction would seriously bias compliance-adjusted

analysis (Hirano and others , 2000).

The absence of the exclusion restriction does not preclude the use of

SMM methodology. Relaxing the restriction while assuming linear SMM’s

and conditioning on univariate compliance summaries CA
i and CB

i jointly (as

in equation 2.3) would lead to:

E[Y A
i − ψA

0 − ψA
1 C

A
i |Xi, C

A
i , C

B
i ] = E[Y B

i − ψB
0 − ψB

1 C
B
i |Xi, C

A
i , C

B
i ]. (D.2)

As the two distinct constants ψA
0 and ψB

0 would not be identifiable, one may

be able to estimate the three parameters from

E[Y A
i − ψ0 − ψA

1 C
A
i |Xi] = E[Y B

i − ψB
1 C

B
i |Xi], (D.3)

where ψ0 = ψA
0 − ψB

0 . Now ψ0 is interpreted as the effect of treatment A

assignment instead of B for the subset of patients with CA
i = CB

i = 0. If,

however, one is not prepared to assume 2.3, but D.3 is derived from 2.1 by

relaxing the exclusion restriction in both equations, such interpretation is

not necessarily valid.

The same identifiability and estimation issues apply as for multivariate

compliance summaries, with CA
i = (1, CA

i ). So we can identify the parame-

ters of interest, provided the matrix E(C|X) with ith row [1,E(CA
i |Xi),E(CB

i |Xi)]

is of full column rank. Thus in particular the predicted compliance sum-

maries E(CA
i |Xi) and E(CB

i |Xi) should have correlation < 1, which is only

possible when there are at least 2 baseline covariates available that predict

compliance.

Regardless of whether 2.1 or 2.3 is assumed, if ψ0 proves to be non-

zero, this would be an evidence for a differential dose-independent effect of

assignment on the two arms. However, without an untreated reference group
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one would not be able to tell whether such direct effect of the assignment is

present on one or both arms. Similarly, the SMM methodology is unable to

detect such effects if they are similar for both arms (ψ0 = 0).
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