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A. SYNERGY patient population

Patients with acute coronary syndrome (ACS) experience one or more of a set of signs and

symptoms of coronary artery disease, including unstable angina, which is chest discomfort

that changes or worsens; and two different forms of myocardial infarction (MI), ST-segment

elevation MI and non-ST-segment elevation (NTSE) MI. ST-segment is a portion of the pat-

tern of an electrocardiogram, elevation of which relative to a normal pattern is associated

with MI. NTSE indicates evidence of a MI based on enzyme elevation but without confirma-

tion from the electrocardiogram. Subjects in SYNERGY were drawn from the NTSE ACS

population who were at risk for undergoing an invasive procedure to treat narrowed coronary

arteries, such as percutaneous coronary intervention, also known as angioplasty, or coronary
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bypass grafting.

B. Justification of weighting scheme

We sketch an argument suggesting that replacing Y ∗

i (u) in (3.3) of the main paper by (4.3)(a)

as in the estimating equation (4.4) should have the desired effect of appropriately weighting

the contributions of subjects who do not optionally discontinue assigned treatment; the

argument for (4.3)(b) is similar.

Because dNi(u) = dN∗

i (u) and Si = S∗

i when Oi ≥ u, (4.3)(a) becomes

I(Oi ≥ u)dN∗

i (u)

K{u, Zi, Qi(·), S∗

i }
. (B.1)

We argue that E{(4.3)(a)|Zi, Q
∗

i } = dN∗

i (u) for u ≥ 0, which suggests that the proposed

weighting scheme will mimic the contributions of the subjects not optionally discontinuing

treatment, as desired. Using (B.1), E{(4.3)(a)|Zi, Q
∗

i } is equal to

E


 I(Oi ≥ u)dN∗

i (u)

{1 − p0(Zi, Xi)} exp
[
−
∫ u∨S∗

i

0
q{s, Zi, Qi(s)} ds

]

∣∣∣∣∣∣
Zi, Q

∗

i


 . (B.2)

By the key missing at random assumption, (B.2) becomes

E


 I(Oi ≥ u)dN∗

i (u)

{1 − p0(Zi, Q
∗

i )} exp
{
−
∫ u∨S∗

i

0
q(s, Zi, Q

∗

i ) ds
}

∣∣∣∣∣∣
Zi, Q

∗

i




=
E{I(Oi ≥ u)|Zi, Q

∗

i }dN∗

i (u)

{1 − p0(Zi, Q∗

i )} exp
{
−
∫ u∨S∗

i

0
q(s, Zi, Q∗

i ) ds
} . (B.3)

It it may be shown that the conditional expectation in the numerator of (B.3) is equal to

the denominator, which follows by writing

E{I(Oi ≥ u)|Zi, Q
∗

i } = {1 − p0(Zi, Q
∗

i )} exp

{
−

∫ u

0

q(s, Zi, Q
∗

i ) ds

}
,

and noting that q(s, Zi, Q
∗

i ) = 0 when s > S∗

i . Thus, under the positivity assumption

K{u, Z, Q(·), S)} ≥ ǫ > 0 for all u ≥ 0, the result follows.
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C. Large sample properties and discussion of weights

We argue heuristically that the estimators solving Equation (4.4) of the main paper are

consistent and asymptotically normal. For brevity, define X̃ = (Z, XT )T , and let

(Z, X)(u, β, γ) =

∑n
j=1

X̃j exp(βZj + γT Xj)w(u, Zj, Xj)I(Oj ≥ u)Yj(u)/K{u, Zj, Qj(·), Sj}∑n
j=1

exp(βZj + γT Xj)w(u, Zj, Xj)I(Oj ≥ u)Yj(u)/K{u, Zj, Qj(·), Sj}
.

Dividing numerator and denominator by n and using iterated conditional expectations yields

(Z, X)(u, β, γ)
p

−→
E{X̃ exp(βZ + γT X)w(u, Z, X)Y ∗(u)}

E{exp(βZ + γT X)w(u, Z, X)Y ∗(u)}
= µZX(u, β, γ),

say. Adding and subtracting a common term in (4.4) of the main paper, write this as

n∑

i=1

∫
{X̃i − (Z, X)(u, β, γ)}

I(Oi ≥ u)w(u, Zi, Xi)

K{u, Zi, Qi(·), Si}
dL∗

i (u, β, γ)

=

n∑

i=1

∫
{X̃i − µZX(u, β, γ)}

I(Oi ≥ u)w(u, Zi, Xi)

K{u, Zi, Qi(·), Si}
dL∗

i (u, β, γ) + op(n
1/2), (C.1)

where dL∗

i (u, β, γ) = dN∗

i (u) − λ0(u) exp(βZi + γT Xi)Y
∗

i (u). Therefore, under appropriate

regularity conditions, the solution in (β, γ) of (4.4), (β̂n, γ̂n), say, is asymptotically equivalent

to the solution of (C.1) set equal to 0, (β̃n, γ̃n), say, in the sense that n1/2(β̂n − β̃n) and

n1/2(γ̂n − γ̃n)
p

−→ 0. Equation (C.1) is a sum of independent and identically distributed

quantities, which we write as
∑n

i=1
m(Wi, β, γ), where

m(W, β, γ) =

∫
{X̃ − µZX(u, β, γ)}

I(O ≥ u)w(u, Z, X)

K{u, Z, Q(·), Sj}
dL∗(u, β, γ).

The expected value of this estimating function, using an argument analogous to that in

Section B above, is equal to E
{∫

{X̃ − µZX(u, β, γ)}w(u, Z, X)dL∗(u, β, γ)
}

. Because this

term is a martingale with respect to the counting process L∗(u), it has mean zero. Thus, as

m(W, β, γ) has mean zero, (β̃n, γ̃n) is an M-estimator (Stefanski and Boos, 2002) and hence

is consistent and asymptotically normal with variance that can be consistently estimated

using the sandwich method, and the same is true for (β̂n, γ̂n).
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The foregoing argument holds for any choice of w(u, Z, X) when interest focuses on condi-

tional (on X) inference in the context of (3.2) of the main paper. For the consistency result,

w(u, Z, X) must depend directly on u, not u ∨ S. As discussed in the main paper, possible

choices include w(u, Z, X) ≡ 1 and w(u, Z, X) = {1 − p0(Z, X)} exp
{
−

∫ u

0
r(s, Z, X) ds

}
,

where r(u, Z, X) = limh→0 h−1Pr(u ≤ Si ≤ u + h, Ei = 1|Si ≥ u, Z, X). When interest fo-

cuses on β in the model (3.1) of the main paper, so on unconditional inference on treatment

effect, as discussed below (4.4), w(u, Z, X) should not depend on X, as noted in the main

paper.

At the beginning of Section 3 of the main paper, it is noted that the methods require

that subjects who mandatorily discontinue assigned treatment prior to tmax are followed to

tmax, so that survival/censoring information is available for these subjects after the time

of discontinuation to tmax, while such information is not required for subjects who are ob-

served to optionally discontinue study treatment. (It is assumed that information on sur-

vival/censoring up to tmax is available for all subjects who are not observed to discontinue

assigned treatment for any reason, as would be the case in a usual study with no treatment

discontinuation.) Inspection of Equation (4.4) reveals why this is so. Subjects who are ob-

served to optionally discontinue assigned treatment have weight κ(u, Wi) = 0 for all u after

the time of optional discontinuation in Equation (4.4) (because I(Oi ≥ u) = 0 for all such

u). Thus, these subjects do not contribute to the integrand after this time, and hence the

information on whether or not they die or are administratively censored after the time of

optional discontinuation will not be incorporated in the equation. In contrast, this informa-

tion is required for subjects who are observed to mandatorily discontinue assigned treatment

up to tmax. This is because, for these subjects, κ(u, Wi) > 0 for all u subsequent to the

time of mandatory discontinuation up to tmax, because these subjects are no longer eligible

to optionally discontinue (so I(Oi ≥ u) = 1 for all such u). Accordingly, these subjects
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continue to contribute to the integrand after this time, and hence information on whether

or not they are at risk and/or die from this point on up to tmax is needed in the equation.

D. Practical implementation

We first outline a series of steps to be carried out to implement the methods in practice,

which requires postulating and fitting models for q{u, Z, Q(u)} and p0(Z, X), and hence

K{u, Z, Q(·), S} (and r(u, Z, X) if applicable).

1. Categorize treatment discontinuation for each subject as mandatory or optional.

2. Fit models used to form K{u, Z, Q(·), S} and w(u, Z, X). For u > 0, for each i =

1, . . . , n for whom Oi > 0, if i was observed to discontinue treatment for optional rea-

sons prior to tmax, set Si equal to the time of optional discontinuation and Λi = 1 (here,

Ei = 1); otherwise, set Si equal to the minimum of i’s observed time to mandatory

discontinuation or treatment completion prior to tmax and time to failure or censoring,

and set Λi = 0 (here, Ei > 1). Thus, Λi is the “censoring indicator” for optional

discontinuation time. For K{u, Z, Q(·), S}, to model q{u, Q(u)}, postulate and fit

to these data a proportional hazards model conditional on treatment assignment Zi

and baseline and post-randomization covariates Xi and V H
i (u). Alternatively, separate

models conditional on Xi and V H
i (u) may be fitted for each treatment; see below. If

there are optional discontinuations at 0, obtain p0(Z, X) by defining Hi = I(Oi = 0)

and postulate and fit a binary regression model for Pr(Hi = 1|Zi, Xi); e.g., logistic

regression.

If stabilized weights are to be used, if interest focuses on β in (3.2) of the main paper,

then one may postulate a proportional hazards model for r(u, Z, X) that depends only

on Z and X and fit it to the data (Si, Λi), i = 1, . . . , n; alternatively, one may fit

proportional hazards models in X separately by treatment. If instead interest is in β
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in (3.1) of the main paper, one should take w(u, Z, X) to not depend on X, which we

write as w(u, Z). Here, to form w(u, Z), if there are optional discontinuations at time

0, a separate model p0(Z) not depending on X is required, which can be estimated by

the treatment-specific sample proportions of optionally discontinuing treatment at 0,

i.e., the estimate of p0(1) would be
∑n

i=1
HiZi/

∑n
i=1

Zi. The second term in w(u, Z)

at time u may be estimated based on proportional hazards model for r(u, Z) with

covariate Z or using treatment-specific Kaplan-Meier estimates of surviving to time u.

3. Based on the fitted models, for each i and u equal to every distinct event time across

all subjects, estimate K{u, Z, Q(·), S}, and, if not taking w(u, Z, X) ≡ 1, estimate

w(u, Z, X) or w(u, Z) as appropriate. This may be accomplished using, for example,

Breslow’s estimator for survival probability.

4. For each i, create weights at each distinct event time u equal to 0 if s/he optionally

discontinued treatment by u or the inverse of the estimate of K{u, Z, Q(·), S} from the

previous step if s/he did not (multiplied by the estimate of w(u, Zi) or w(u, Zi, Xi) if

not taking w(u, Z, X) ≡ 1).

5. Substitute the weights in (4.4) of the main paper and solve for β and γ, and estimate

the variance of the estimators via the sandwich method. This may be implemented,

for example, using SAS proc phreg (SAS Institute, 2006) with the counting process

input format, a weight statement, and the covs(aggregate) option. The resulting

score test for β corresponds to a “logrank” test for β = 0.

In the next section of this document, we present SAS code implementing these steps.

It is worth noting that, in fitting the proportional hazards models in step (2) above,

one may regard the “censoring” indicated by Λi as administrative. The partial likelihood

methods used to fit these models directly estimate the cause-specific hazards q{u, Z, Q(u)}

in (4.2) of the main paper and r(u, Z, X), which for our purposes are the quantities of
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interest. Ordinarily in routine survival analysis, one is interested in the net-specific hazard,

and the assumption of independence of the event and censoring times is needed so that the

cause-specific and net-specific hazards are equivalent, as discussed in general in Chapter 8 of

Kalbfleisch and Prentice (2002). Because we are interested in cause-specific hazards directly,

this assumption is not required.

Asymptotic theory for inverse weighted methods implies that, the more complex the

models involved in the weights (in terms of numbers of parameters fitted), the better the

precision of estimation of β and γ, suggesting using separate models for each treatment.

However, finite sample degradation of performance can occur when numerous parameters

in these models are estimated, suggesting use of more parsimonious models. This trade-off

should be evaluated by the analyst. In Sections 5 and 6 of the main paper, we fitted models

of both types.

Programs such as proc phreg treat the estimated weights as fixed, so do not take into

account estimation of parameters in the models defining the weights in step (2) above. As

noted by Robins and others (2000), this should lead to conservative confidence intervals

and hypothesis tests based on “robust” sandwich errors calculated by the software. Faithful

application of the sandwich theory to obtain standard errors accounting for this estimation

is quite unwieldy. Alternatively, a nonparametric bootstrap could be used. In all simulations

we have conducted, including those in Section 6 of the main paper, the effect of using the

output standard errors “as-is,” so ignoring the effect of estimating the weights, has been

negligible.

As noted at the end of Section 3 of the main paper, the methods are also applicable

to a binary endpoint. We consider the simple case, as in SYNERGY with tmax = 30 days,

where occurrence of the event if prior to tmax is observed without censoring for virtually all

subjects. The observed endpoint is thus Ri = I(Ui ≤ tmax), where Ui is now the uncensored
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event time if before tmax and otherwise is known to be > tmax. Although some subjects may

discontinue treatment for optional reasons prior to tmax, so deviating from the regimes of

interest, we may conceptualize potential outcomes and a logistic regression model analogous

to (3.1) in which the (unconditional) effect of the two regimes is formally defined. To

estimate consistently the log-odds ratio β, say, corresponding to this effect, a weighted

version of the maximum likelihood score equations for logistic regression based on (Ri, Zi),

i = 1, . . . , n, may be formulated, where the summand for subject i is multiplied by an

estimate of I(Oi ≥ tmax)/K{tmax, Z, Q(·), S}; here, stabilizing the weights has no effect.

This may be implemented by using, e.g., SAS proc genmod (SAS Institute, 2006) with a

weight statement. Again, inferences based on the output (default robust) standard errors

may be conservative.

In the event the outcome is censored prior to tmax for some subjects, one can estimate the

desired odds ratio by calculating the ratio of the estimated probabilities of the outcome oc-

curring by tmax derived from fitting treatment-specific survival curves using inverse weighting

as in Cole and Hernán (2003).

E. SAS code

The following code implements the inverse probability risk set weighted methods for a time-

to-event outcome in a scenario similar to that of the simulations in Section 6 of the main

paper but that also allows subjects who optionally discontinue assigned treatment at time

zero. Code is given for two situations: the case where w(u, Z, X) ≡ 1, and the case where

stabilized weights are used. The former is straightforward, and is shown first. Implementa-

tion with stabilized weights is considerably more complicated, owing to the fact that, while

the denominator K{u, Z, Q(·), S} ceases to change after time S, the numerator will not; see

below.
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This code demonstrates implementation in the case where w(u, Z, X) ≡ 1 (no stabilizing

of weights).

/* In the dataset, every row corresponds to a distinct subject */

/* First model the probability of optional discontinuation at time 0.

pH is the probability of optional discontinuation at 0 */

proc logistic data=dataset descending;

model H=Z X1 X2;

output out=initstop(keep= i pH) p=pH;

run;

data dataset; merge dataset initstop; by i;

run;

/* create data in counting process input format for modeling

time-to-optional-discontinuation if O>0. For simplicity, time is

rounded up to integers and we split time into intervals of length 1

Lambda2 is the indicator for observing optional discontinuation in

counting process input format.

Lambda is as defined in the implementation section.

Vh is a time-dependent covariate. */

data modelstop; set dataset;

if H=0; keep H i d1 d2 S Lambda Lambda2 X1 X2 Vh D Z;

do d2=1 to S;

d1=d2-1;

Vh=0;

if d1>=D then Vh=1;

Lambda2=0;

if d2=S then Lambda2=Lambda;

output;

end;

run;

/* model time-to-optional-discontinuation for creating weight -

separately build model for each treatment group */

proc phreg data=modelstop; where Z=0;

id i;

model (d1,d2)*Lambda2(0)= X1 X2 Vh;

output out=stopprob0(keep=stopprob i d1 d2) survival=stopprob;

run;

proc phreg data=modelstop; where Z=1;

id i;

model (d1,d2)*Lambda2(0)= X1 X2 Vh;

output out=stopprob1(keep=stopprob i d1 d2) survival=stopprob;
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run;

data stopprob; set stopprob0 stopprob1;

run;

proc sort data=stopprob; by i d1 d2;

run;

/* create data in counting process input format for modeling the event time.

Delta2 is the indicator for observing event in counting process input

format.

Delta is as defined in the main paper */

data modeldth; set dataset;

if H=0;

keep pH H i d1 d2 S Delta Delta2 U Z Lambda ;

do d2=1 to S;

d1=d2-1;

Delta2=0;

if d2=U then Delta2=Delta;

output;

end;

if S<U then do;

d1=S;

d2=U;

Delta2=Delta;

output;

end;

run;

/* here we take w(u,Z,X) = 1. If instead you want to take

w(u,Z,X) to depend on (Z,X), must also fit another proportional

hazards model with only these covariates */

data modeldth; merge stopprob modeldth; by i d1 d2;

stopprob2=lag1(stopprob);

if stopprob=. then stopprob=stopprob2;

invwt=1/(stopprob*(1-pH));

if Lambda=1 and d2>S then invwt=0;

run;

/* Solve (4.4) and get sandwich variance */

proc phreg data=modeldth COVSANDWICH(aggregate);

id i;

model (d1,d2)*Delta2(0)=Z;

weight invwt;

run;

This code demonstrates implementation in the case where w(u, Z, X) is taken to depend

on u; in this case, w(u, Z) was defined by fitting a proportional hazards model as in Section
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D. As noted above, this is considerably more complicated than the foregoing code due to

the fact that the numerator w(u, Z) continues to change with time while the denominator

does not. This introduces additional complexity due to the need to convert the data set

into the appropriate counting process format in order to solve equation (4.4) in the main

paper using proc phreg. In fitting the proportional hazards model for w(u, Z) in this case,

because w(u, Z) changes with time for u > S, one must further split the time interval from

S to u into subintervals. The user should be aware that adaptation of this code to his or her

situation will require some effort.

/* In the dataset, every row corresponds to a distinct subject */

/* First model the probability of optional discontinuation at time 0 given Z

and X. pH is the probability of optional discontinuation at 0 */

proc logistic data=dataset descending;

model H=Z X1 X2;

output out=initstop(keep= i pH) p=pH;

run;

/* Model the probability of optional discontinuation at time 0 given Z for

creating the stabilized weights */

proc logistic data=dataset descending;

model H=Z;

output out=numinitstop(keep= i numpH) p=numpH;

run;

data dataset; merge dataset initstop numinitstop; by i; run;

/* Kaplan-Meier estimator for treatment specific survival functions

for creating the stabilized weights */

proc phreg data=dataset; where Z=0;

model S*Lambda(0)=;

baseline out=numstopprob0 survival=numstopprob0;

run;

proc phreg data=dataset; where Z=1;

model S*Lambda(0)=;

baseline out=numstopprob1 survival=numstopprob1;

run;

data numstopprob0; set numstopprob0; d2=S; drop S;run;

data numstopprob1; set numstopprob1; d2=S; drop S;run;

/* Create data in counting process input format for modeling

time-to-optional-discontinuation if O>0. For simplicity, time is
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rounded up to integers and we split time into intervals of length 1

Lambda2 is the indicator for observing optional discontinuation in

counting process input format.

Lambda is as defined in the implementation section.

Vh is a time-dependent covariate. */

data modelstop; set dataset;

if H=0; keep H i d1 d2 S Lambda Lambda2 X1 X2 Vh D Z;

do d2=1 to S;

d1=d2-1;

Vh=0;

if d1>=D then Vh=1;

Lambda2=0;

if d2=S then Lambda2=Lambda;

output;

end;

run;

/* Model time-to-optional-discontinuation for creating weight -

separately build model for each treatment group */

proc phreg data=modelstop; where Z=0;

id i;

model (d1,d2)*Lambda2(0)= X1 X2 Vh;

output out=stopprob0(keep=stopprob i d1 d2) survival=stopprob;

run;

proc phreg data=modelstop; where Z=1;

id i;

model (d1,d2)*Lambda2(0)= X1 X2 Vh;

output out=stopprob1(keep=stopprob i d1 d2) survival=stopprob;

run;

data stopprob; set stopprob0 stopprob1;

run;

proc sort data=stopprob; by i d1 d2;

run;

/* Create data in counting process input format for modeling the event time.

Delta2 is the indicator for observing event in counting process input

format.

Delta is as defined in the main paper */

data modeldth; set dataset;

if H=0; keep pH numpH H i d1 d2 S Delta2 Delta U Z Lambda ;

do d2=1 to U;

d1=d2-1;

Delta2=0;

if d2=U then Delta2=Delta;

output;
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end;

run;

/* Calculate the Kaplan-Meier estimator at each time point */

proc sort data=dataset out=dataset2; by descending U; run;

data dataset2; set dataset2; if _N_=1; keep U; run;

data modeldth2; set dataset2; keep U d2;

do d2=1 to U;

output;

end;

run;

data modeldth2; merge modeldth2 numstopprob0 numstopprob1; by d2; run;

data modeldth2; set modeldth2; retain numstopprob0a numstopprob1a;

if numstopprob0^=. then numstopprob0a=numstopprob0;

else numstopprob0a=numstopprob0a;

if numstopprob1^=. then numstopprob1a=numstopprob1;

else numstopprob1a=numstopprob1a;

if d2=0 then delete;

run;

/* As the denominator of the weight, K{uVS, Q (uVS)}, for a subject will

be constant in time if u>S, we need to find K{S, Q(S)} */

data laststopprob; set stopprob; by i d1 d2; if last.i;

stopprob2=stopprob; drop stopprob;

run;

data modeldth; merge modeldth laststopprob(keep=i stopprob2); by i;run;

data modeldth; merge stopprob modeldth; by i d1 d2;

if stopprob=. and d2>S then stopprob=stopprob2;

run;

proc sort data=modeldth; by d2; run;

data modeldth; merge modeldth modeldth2(keep=d2 numstopprob0a numstopprob1a);

by d2;run;

proc sort data=modeldth; by i d1 d2;run;

/* Construct the stabilized weight */

data modeldth; set modeldth;

invwt=1/(stopprob*(1-pH));

if Z=0 then

stbinvwt=numstopprob0a*(1-numpH)*invwt;

else stbinvwt=numstopprob1a*(1-numpH)*invwt;

if Lambda=1 and d2>S then do; invwt=0; stbinvwt=0; end;

run;

/* Solve (4.4) and get sandwich variance */
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proc phreg data=modeldth COVSANDWICH(aggregate);

id i;

model (d1,d2)*Delta2(0)=Z;

weight stbinvwt;

run;
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