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1. DERIVATION OF EQUATION 4.1

We derive the posterior expectationg@fgiven the observed log-ratia;. ¢; is modelled
asexp(a) ande; as N (0, 0%) wherea ando? are estimated empirically from the data.

We drop the subscript for convenience.

E(qg|m)=0-Plg=0)+E(q|q>0,m)-Pg>0)

The joint distribution ofy ande is given by

1 e
faelg>o(a,€) = aexp(—aq);(b (;)
Since the Jacobian of the transformationlishe joint distribution ofg andm is

simply

fq,m|q>0((], m) = aexp(—aq) 1¢ (q - m)

(2 g

The marginal distribution of is given by

fmjgso(m) = /0 famlg>0(q; m)dg



Substitutingw = (¢ — m) /o we have

fimjgso(m) = ffn/a aexp(—a(ow +m))® (w) dw

> 1 w?
= aexp(—am)/ exp(—aow)——— exp 5 dw

—m/o V2T
( ) (a202> /°° 1 ( (w+aa)2) p
=  «aexp(—am)ex exp | ——— | dw
p () ) e 5

By substitutingz: = w + o« we obtain the right hand side:

( ) (0120-2 ) /'OO 1 ( 22 ) p
o expl—am)ex ex —_— VA
P P 2 —m/o+oa V 2m P 2

a?o? m — ao?
= aexp 5 —am | ® —

We can then write the posterior distributionggjiven the datan,

aexp(—aq);¢(")

wherea = m — ac?. By substituting: = (¢ — a)/o we obtain the posterior expecta-

tion, conditional ony > 0:



Thus

o(3)
E(q|m)= (a—l—a—‘; -P(¢>0)
()
The parameters ando? are estimated as in the RMA convolution model, but with
GC-stratification and with the restriction that the normainponent be centered at
po = 1 — P(g; > 0) is estimated by the fraction of probes for whigh < 0. We
assessed the sensitivity of percentage methylation estsnap, estimation. Varying,

estimates across the range observed in the 25 samples #rdSsulted in a maximum

percentage methylation change of 4% suggesting robudimgg®stimation error.

2. MICROARRAY DATA QUALITY ASSESSMENT

Data quality metrics provide a useful tool for identifyingtler probes or entire arrays

that should be considered for exclusion from the analysisthilation levels are esti-



mated by comparing the treated (enriched) channel to threated (total input) channel.
In the case of the McrBC approach for instance, methylatival$ecan be estimated
from the amount of depletion in the treated channel comptréae untreated channel.
As a result, the range of measurable methylation (the dymaamge) is determined in
large part by the quality of the untreated channel signalc&ithe untreated channel
measures total DNA, all probes are expected to record a lnyglals Similar to the ap-
proach of Thompsoand others (2008) we assess the quality of the untreated channel
signal by comparing these probes to the signal from the vadkgl probes that measure
cross-hybridization and scanner optical noise. We definebgs quality score as its
percentile rank among those background probes with the &®reontent. Probes with
consistently low scores<(75% in this paper, for example) can be flagged for exclusion
from the analysis. Similarly, the array quality score, dedims the mean probe score, is
a useful metric for identifying outlier arrays to be removed

A heatmap plot of probe intensity by physical location is acs®l useful tool for
identifying hybridization problems. Since probes are ¢t@tly located randomly across
an array, we do not expect any spatial bias in signal streigpth channels should
show uniform signal intensity over the physical array. Tikiparticularly useful for the
enriched channel where we cannot compare probes to the roackylevel since low

intensity is indicative of methylation.

3. BACKGROUND SIGNAL REMOVAL

Background signal is removed using a modified version of theuRolultichip Aver-
age (RMA) convolution model (Irizarrgnd others, 2003). The RMA model assumes

that the observed intensity is the sum of normally disteldubackground noise and the



true signal, modeled as an exponential. We modify the RMA hpgrameter estimation
procedure by taking advantage of anti-genomic backgrouodgs, available on most
current array designs, to more accurately estimate thegbackd component. In addi-
tion, we use GC-stratification to account for the dependendsackground signal level
with GC-content.

While removing background signal levels has the benefit aieed) bias this comes
at the expense of increased variance (Schangbthers, 2007). The increase in variance
can potentially lead to an inflated false positive rate whdsmiifying methylated or
differentially methylated regions in downstream analyisig this is largely mitigated by

taking variance estimates into account.

4. CPG DENSITY / FRAGMENT LENGTH BIAS

Enrichment of methylated DNA by restriction enzyme basepraaches has been re-
ported to be dependent on the digested fragment length (psonand others, 2008).
This bias is largely believed to be the result of PCR amplificatvhose efficiency is
size-dependent. Thompsand others (2008) present a normalization scheme to adjust
for this bias. A second contributing factor to the dependanay be a true relationship
between methylation levels and fragment length. This isageable given that restric-
tion fragment length is dependent on CpG density which is knimbe a determinant of
methylation levels. To isolate the effect of these factoesgenerated a fully methylated
sample by in-vitro treatment with Sss1 methylase. We exadhthe effect of fragment
length in the context of the CHARM assay by plotting the medianchment log-ratio
by fragment length, as estimated using McrBC recognitiasshVhile the relationship

is similar to that described previously for the samples withmal methylation levels



(Figure 1a), it does not hold for a fully methylated sampleife 1b). This suggests
that, in the context of this assay, the methylation logeratéed not be corrected for
fragment length biases. Further evidence for lack of bigwasided by comparing the
methylation log-ratios to independent sequencing vetiboadata, where we observe

no relationship between error and fragment length (Figiwre 2



(a) Samples with normal methylation levels (b) Fully methylated sample
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Fig. 1. The x-axis shows restriction fragment length and the y-axis stivevmedian enrichment log-ratio for (a) the

tissue samples with normal methylation levels, and b) a fully methylated sample
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Fig. 2. DNA fragment length and CpG density do not bias the methylation &stinhihe data represents the discrep-
ancy between microarray percentage methylation estimates and anriddapbisulfite sequencing verification data

set.
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Fig. 3. The distribution of unmethylated control probe log-ratios is cedtate following pre-processing.
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