Genoty	Mous	WBC	RBC	НСТ	PLT	Neut	Lymph	Mono,	Blas
ре	e #	(x	(x	(%)	(x	(x 10 ³ /µl)	(x 10 ³ /µl)	Eosin,	ts
		10³/µl)	10⁰/µl)		10³/µl)			Baso (%)	(%)
WT	N=4	5.98	9.57	45.1	1164	0.60 (10.0%)	5.02	1.5, 2.4, 0.1	0.97
		(± 0.9)	(± 0.5)	(± 1 2)	(± 155)	(± 1.7%)	(83.9%) (± 1.6%)	$(\pm 0.3, 0.4, 0.1)$	(±0.8
NR4A1 ⁺	3197	4 52	9 42	47.6	1038	1 60	2 66		, 61
/-	0101	1.02	0.12	17.0	1000	(35.4%)	(58.8%)	0.0, 0.0,0.0	0.1
NR4A3 ⁻	3330	11.00	10.92	54.8	1260	5.67	4.70	0.4. 3.0.	2.3
/-						(51.5%)	(42.7%)	0.1	-
	3526	5.60	7.40	38.2	486	1.20	3.66	4.3, 5.2,	3.8
						(21.4%)	(65.4%)	0.4	
	3509	7.10	9.20	44.8	1524	1.68	5.12	1.0, 0.4,	2.5
						(23.7%)	(72.1%)	0.1	
	3215	2.88	4.74	23.0	694	1.08	1.42	3.4, 6.1,	3.4
	0544	40.0	40.0	54.0	4004	(37.5%)	(49.4%)	0.2	<u> </u>
	3511	18.9	10.9	54.6	1264	12.3	4.76	2.1, 1.5,	6.3
	2460	10 00	0 66	110	1050	(64.9%)	(25.2%)	0.0 5 4 4 2	10
	3400	12.00	0.00	44.0	1050	4.00 (31.7%)	0.00	0.4, 4.2, 2.2	1.0
	3400	72.8	53	20.6	720	31 52	(40.078)	8492	٩a
	0400	72.0	0.0	20.0	120	(43.3%)	18 8(25 8	24	0.0
						(10.070)	%)	2.1	
	3402	5.82	6.58	33.6	580	2.02	2.69	4.9. 7.8.	4.3
						(34.7%)	(46.2%)	2.1	-
	3507	6.66	11.10	49.8	596	1.4 7	4.32	2.9, 6.2,	3.8
						(22.0%)	(64.9%)	0.2	
	3904	5.72	5.08	25.2	804	2.56	3.03	0.2, 0.3,	1.7
						(44.8%)	(53.0%)	0.0	
	3889	8.66	7.22	32.4	914	3.20	5.20	0.3, 0.3,	2.3
	2022	45.00	0.04	0F F	400	(37.0%)	(60.0%)	0.1	0.7
	3832	15.30	8.64	35.5	420		6.00	5.1, 7.1,	6.7
	3023	17 80	0.60	11 2	21/	(41.0%)	(39.2%)	U.S 7203	137
	5525	17.00	3.00	41.2	214	(42.8%)	(26.3%)	7.2, 9.3, 0.7	10.7
	3936	14.60	10.81	52.1	711	5.49	6.04	5.4.4.1.	11.2
	0000	1 1100	10101	02.1		(37.6%)	(41,4%)	0.3	
	3902	32.90	9.12	37.5	909	` 13.9	` 13.6	3.4, 9.4,	4.6
						(42.3%)	(40.1%)	0.2	
	3709	10.90	10.70	29.8	527	2.55	6.02	2.1, 1.4,	17.9
						(23.4%)	(55.2%)	0.0	
	3830	13.10	11.34	31.6	220	4.31	7.52	1.1, 2.7,	5.8
	0050	4.4.00	0.00	07.4	10.10	(32.9%)	(57.4%)	0.1	.
	3853	14.20	8.29	27.4	1240	5.20	5.72	7.1, 7.5,	8.1
	2462	10.66	1.06	12.0	102	(36.6%)	(40.3%)	0.4	0.0
	3402	10.00	1.90	12.0	102	(16.5%)	0.40 (70.5%)	2.2, 1.2,	0.0
	3320	11 18	9 10	30.6	702	1 90 (17%)	(79.578)	3661	12
	0020	11.10	5.10	00.0	102	1.50 (1770)	(68.6%)	0.0, 0.1,	1.2
	3447	3.76	9.02	43.4	400	0.60 (16%)	3.04	0.2. 0.9	2.1
		20					(80.8%)	0.0	
	3340	0.94	3.72	18.8	500	0.11	0.65	2.7, 1.9,	12.5
						(11.7%)	(69.1%)	0.3	
	3527	4.79	5.60	46.7	564	0.685	3.36	0.8, 2.4,	12.2
						(14.3%)	(70.1%)	0.2	

Table S1. Hematological parameters of individual Hypoallelic mice, classified according to Bethesda criteria as MDS/MPN, at time of sacrifice

Genoty	Mous	WBC	RBC	HCT	PLT	Neut	Lymph	Mono,	Blas
ре	e #	(x	(x	(%)	(x	(x 10 ³ /µl)	(x 10 ³ /µl)	Eosin,	ts
		10 ³ /μl)	10 ⁶ /µl)		10 ³ /μl)			Baso (%)	(%)
	3719	7.96	9.62	49.2	1174	1.58	5.35	3.6, 5.9,	3.4
						(19.8%)	(67.2%)	0.1	
NR4A1 ⁻	3227	9.44	8.18	40.0	1444	2.26	6.04	1.9, 7.9,	1.7
/-						(23.9%)	(64%)	0.4	
NR4A3 ⁺	3341	15.30	6.70	33.0	1646	7.30	7.01	0.8, 2.4,	1.9
/-						(47.7%)	(46.4%)	0.3	
	3467	0.64	9.12	46.0	1108	0.21	0.09	14.5, 15.2,	17.0
						(33.0%)	(14%)	6.3	
	3403	32.82	9.7	50.4	1594	24.9	2.49	5.0, 6.1,	3.2
						(76.0%)	(7.6%)	1.1	
	3424	12.87	9.71	42.0	240	5.43	5.64	2.4, 3.0,	8.5
			A 4A			(42.2%)	(43.8%)	0.1	<u> </u>
	3468	11.32	9.40	46.2	1068	2.22	8.30	1.7, 2.1,	2.1
	0400	40.04	- 1-	~~~~	700	(19.6%)	(73.3%)	1.1	
	3192	10.94	5.47	33.6	780	4.37	3.61	4.6, 5.0,	5.3
	0500	4.00	7.04	40.0	4050	(39.9%)	(33.0%)	2.2	4.0
	3589	4.38	7.64	48.0	1358	1.45	2.16	4.0, 8.7, 0	4.9
	2404	45 50	10.00	F 4 C	4000	(33.1%)	(49.3%)	22.24	10
	3401	15.50	12.06	54.0	1308	(21.0%)	(70%)	3.2, 3.4,	1.2
	2400	12 40	9.76	F O 0	017	(21.9%)	(70%)	2150	77
	3400	13.40	0.70	52.5	017	0.00	0.37 (40.10/)	3.1, 3.0,	1.1
	3504	11.80	0.28	47.6	740	(43.976)	(40.176)	2758	36
	5504	11.00	9.20	47.0	740	(11.2%)	(46.3%)	2.7, 5.0,	5.0
	3538	6 72	7.61	37.8	310	(+1.270)	(+0.570)	163/	20
	0000	0.72	7.01	57.0	010	(25.3%)	(66 8%)	1.0, 0.4,	2.5
	3570	12 91	7 78	41 4	1101	3 74	6 48	61 90	56
	0010	12.01				(29.0%)	(50.2%)	0.1	0.0
	3615	14.50	6.40	40.2	510	5.42	6.49	4.2. 6.7.	4.9
						(37.4%)	(44.8%)	2.0	
	3836	14.20	6.73	44.7	212	6.0 4	` 5.31	1.3, 2.6,	15.6
						(42.5%)	(37.4%)	0.6	
	3411	6.36	7.32	34.4	324	0.76 (12%)	5.36	0.2, 0.6, 0	2.8
							(84.3%)		
	3338	7.08	7.74	42.8	390	1.02	5.52	2.1, 4.0,	1.1
						(14.4%)	(78%)	0.2	
	3515	7.60	10.12	32.9	422	1.33	4.31	7.2, 5.1,	12.7
						(17.6%)	(56.7%)	0.7	
	3720	4.77	8.51	29.6	54	0.77	2.46	7.1, 9.8,	14.8
						(16.2%)	(51.6%)	0.5	
	3339	4.12	8.60	48.0	1242	0.68	2.69	11.1, 4.2,	1.6
						(16.5%)	(65.3%)	1.3	

HCT, hematocrit; PLT, platlet; Neut, neutrophils; Lymph, lymphocytes; Mono, monocytes; Eosin, eosinophils; Baso, basophils. Normal Values: wbc, $3.2-12.7 \times 10^3/\mu$ l; rbc, $7.0-10.1 \times 10^6/\mu$ l; HCT, 36.7-46.8%; PLT, $766-1657 \times 10^3/\mu$ l; Neut, 0.5- 2.0 x $10^3/\mu$ l; Lymph, 3.80- 8.90 x $10^3/\mu$ l; Mono, 0-4.3%; Eosin, 0.2- 5.9%; Baso, 0- 0.3%; Blasts, 0 - 3.2%. Red color denotes mice displaying neutrophilia (>20% as defined in Bethesda guide); blue color denotes mice displaying thrombocytopenia (<800 x $10^3/\mu$ l).

Table S2. Hematological parameters of individual Hypoallelic mice, classified according to Bethesda criteria as AML, at time of sacrifice

Genoty	Mous	WBC	RBC	HCT	PLT	Neut	Lymph	Mono,	Blas
pe	e #	(x	(x	(%)	(x	(x 10 ³ /µl)	(x 10 ³ /µl)	Eosin,	ts
		10 ³ /μl)	10 ⁶ /μl)		10 ³ /μl)	、 · · /	、 ・ /	Baso (%)	(%)
WT	N=4	5.98	9.57	45.1	1164	0.60 (10.0%)	5.02	1.5, 2.4, 0.1	0.97
		(± 0.9)	(± 0.5)	(±	(± 155)	(± 1.7%)	(83.9%) (±	(± 0.3, 0.4,	(±0.8
				1.2)			1.6%)	0.1))
NR4A1 ⁺	2996	47.3	1.84	8.7	544	12.7	16.4	1.7, 2.5,	34.2
/-						(26.8%)	(34.6%)	0.2	
NR4A3 ⁻	1061	10.80	8.21	44.1	120	2.21	4.03	2.5, 3.0,	36.3
/-						(20.5%)	(37.3%)	0.4	
	3649	12.91	8.95	35.3	47	2.98	6.33	2.1, 3.2,	22.5
						(23.1%)	(49.0%)	0.1	
NR4A1 ⁻	2140	9.31	7 70	25.7	132	1 51	4 08	1446	33.9
/-	2110	0.01	1.10	20.1	102	(16.2%)	(43.8%)	0.1	00.0
NR4A3⁺	3523	7.10	5.31	19.8	98	1.01	3.83	2.3. 2.7.	26.3
/-			5.0.			(14.2%)	(53.9%)	0.6	_,,,,

HCT, hematocrit; PLT, platlet; Neut, neutrophils; Lymph, lymphocytes; Mono, monocytes; Eosin, eosinophils; Baso, basophils. Red color denotes mice displaying neutrophilia (>20% as defined in Bethesda guide); blue color denotes mice displaying thrombocytopenia (<800 x $10^3/\mu$ l).

Table S3. Mouse data

Mouse MPD (Kogan et al)	Hypoallelic Mice
1. By definition, this diagnosis is for lesions that	The disease is nonreactive, persistent and
are nonreactive, persistent, genetically determined	genetically determined.
and meet criteria 2-4 below.	
2. Mice exhibit increased nonlymphoid	(A) leukocytosis of myeloid cells
hematopoietic cells as evidenced by any	(neutrophils represent >20% of PB
combination of the following:	leukocytes)
(A) Erythrocytosis, leukocytosis of myeloid	(B) Mice display increased myeloid cells in
cells, and/or thrombocytosis/circulating	both the spleen and bone marrow as
micromegakaryocytes	measured by cytospin, flow cytometry and
(B) Increased nonlymphoid hematopoietic cells	immunohistochemistry.
in spleen and/or bone marrow	
3. Disorder is not a nonlymphoid leukemia	Peripheral blood and bone marrow and
	spleen cytospins show <20% blasts (except
	in rare, transformed mice).
4. Disorder is not a myeloid dysplasia (if a	Mice also exhibit features of myeloid
disorder satisfies criteria 1 and 2 but also fulfills	dysplasia including dysgranulopoiesis
criteria for myeloid dysplasia, the diagnosis of	Therefore the diagnosis of MDS was
myeloid dysplasia should also be included)	included.

Table S4. Blood analysis of individual mice used for qPCR analysis

Larry Stage Whee used for NR4A1 NR4A5 mile used for qr CR									
WBC	RBC	НСТ	PLT	Neut (%)	Lymph (%)	Blasts			
5.98	9.87	48	1219	28.53%	66.67%	0.96%			
8.66	9.28	47.2	1170	6.90%	84.80%	1.20%			
9.62	7.88	43	1424	11.10%	82.50%	3.9%			

Early Stage Mice used for NR4A1^{+/-} NR4A3^{-/-} mice used for qPCR

Late Disease stage NR4A1^{+/-}NR4A3^{-/-} mice used for qPCR

Mouse	WBC	RBC	нст	PLT	Neut (%)	% Ly Lymph (%)	PB Blasts	BM Blasts	Sp Blasts
*3426	12.26	7.88	37.6	760	16.6	61.40%	18%	25%	29%
3524	7.22	8.38	11.4	278	11.8	65.70%	13%	18%	14%
3527	3.57	7.94	37.7	215	24.1	59.20%	12.40%	15%	16%

* Myeloid blast counts in BM and spleen showed # 3426 classified as AML

Figure S1. Complex disease progression evidenced by serial blood counts of hypoallelic mice.

(A–E) Serial peripheral blood counts of rbc (× $10^6/\mu$ l), wbc (× $10^3/\mu$ l), neutrophils (× $10^3/\mu$ l), blasts (%), platlets (× $10^5/\mu$ l) and lymphocytes (× $10^3/\mu$ l) taken by retrorbital bleeding of WT (A) or MDS/MPN *NR4A1^{-/-}NR4A3^{+/-}* (B–C) and *NR4A1^{+/-}NR4A3^{-/-}* (D– E) mice at indicated time points shows an increase in neutrophil number at disease onset (B and D) in some hypoallelic mice. With disease progression mature lineages (neutrophils, RBC, WBC, lymphocytes and platelets) decline with a concomitant increase in blast number (B–D) leading to pancytopenia in some hypoallelic mice, while others die from massive neutrophil expansion (E). N=2 for WT control and n=4 for hypoallelic mice (2 mice per indicated genotype, one mouse shown per graph).

Figure S2. Expansion of myeloid elements in the bone marrow and perivascular infiltration of thymic cortex of hypoallelic mice.

(A) Flow cytometric analysis of bone marrow from moribund $NR4A1^{+/-}NR4A3^{-/-}$ mice (n=3, at 4–7 months) shows expansion of myeloid cells (CD11b⁺/Gr-1^{low} and CD11b⁺/Gr-1⁺) compared to healthy littermates. Expansion of myeloid lineages was comparable to that seen in $NR4A1^{-/-}NR4A3^{+/-}$ mice (n=4, at 9–12 months). Numbers shown are the average percent of total cells for the associated region. (B) Flow cytometric analysis of bone marrow from moribund $NR4A1^{+/-}NR4A3^{-/-}$ mice (n=3, at 3–5 months) demonstrated no increase in CD71⁺/Ter119⁺ cells, indicating erthryopoesis is normal in these mice. (C–F) Hematoxylin and eosin stained paraffin sections of thymus. Thymus from $NR4A1^{+/-}NR4A3^{-/-}$ hypoallelic mouse (at 5 months) (C) revealed loss of distinct thymic architecture, including well-defined cortex needed for T cell maturation, compared to control mice (D). Scale bar, 500µm for main image, 250µm for insets. (E–F) Antimyeloperoxidase immunohistochemistry revealed myeloid contribution to infiltrates in hypoallelic thymus (E), which were not present in control (F). Scale bar, 250µm for main image, 50µm for insets.

Figure S3. Basal DNA damage in myeloid progenitor cells.

(A) CD11b⁺/Gr-1^{low-neg} cells from MDS/MPN $NR4A1^{+/-}NR4A3^{-/-}$ mice (n=4) were analyzed for DNA damage. Scatter plot of percent γ H2AX positive cells (200 cells counted per mouse) in un-irradiated samples shows 3 out of 4 hypoallelic mice analyzed have increased basal DNA damage.

Figure S4. Blast crisis transformation does not require cooperation between *NR4A* silencing and gross genetic abnormalities. (A) Microscope display image. (B) Spectral karyotype (SKY) analysis DAPI banding pattern. (C) SKY analysis classification colors. (D) SKY analysis of whole bone marrow isolated from blast crisis phase (>20% blasts) $NR4A1^{-l-}NR4A3^{+l-}$ animals. Analysis shown is from a representative animal. 5–10 metaphase spreads were analyzed per animal. N=3 (age 9–12 months).

Figure S5. Silencing of the remaining NR4A alleles is not required for disease progression. (A) Real-time PCR analysis of *NR4A1* using RNA isolated from CD11b⁺/Gr-1^{low-neg} cells from healthy *NR4A1^{+/+}NR4A3^{+/-}* mice (WT control for *NR4A1*), healthy *NR4A1^{+/-}NR4A3^{+/+}* (heterozygous (Het) control for *NR4A1*), early disease *NR4A1^{+/-}NR4A3^{-/-}* hypoallelic mice (6–8 weeks of age, 1–4% blasts) and late disease MDS/MPN *NR4A1^{+/-}NR4A3^{-/-}* hypoallelic mice (at 4–10 months of age, 12–18% blasts) shows the remaining *NR4A1* allele is not silenced with disease progression. Additionally, *NR4A1^{-/-}NR4A3^{+/-}* mice (null control (KO) for *NR4A1*) were used as a control for qPCR. N=3 for each genotype and disease stage. Results were normalized to $\beta 2m$ expression. Error bars denote s.e.m. (B) Because MDS/MPN *NR4A1^{+/-}NR4A3^{-/-}* mice are wild type for the third family member, *NR4A2*, we also conducted real-time PCR analysis of *NR4A2* using RNA isolated from CD11b⁺/Gr-1^{low-neg} cells, from the same cohorts of mice, to determine whether disease progression was associated with loss of *NR4A2* expression. We found that *NR4A2* is not silenced in MDS/MPN mice. N=3 for each genotype and disease stage. Results were normalized to $\beta 2m$ expression.