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Additional Task Results: Probability-magnitude bias

As noted in the main text, the CEVR condition was included to compare with CEV as a measure

of probability-magnitude bias (PM-bias = CEVR - CEV). We found PM-bias to be positive across

all groups (p< .001; Figure S1), as participants avoided responding earlyin CEVR due to the low

reward probability at that time, consistent with loss-aversion (1). Supporting this interpretation,

DRD2 T/T carriers, who showed enhanced NoGo learning as assessed by IEVdiff above, also

showed relatively greater PM-bias than C carriers (F(1,66)= 4.7, p =.03; Figure S1b). Their RTs

in the last block of CEVR were also significantly slower (F[1,66] = 5.7, p = .02). Both IEVdiff

and PM-bias were also elevated in non-medicated Parkinson’s patients (2), consistent with their

performance in other learning paradigms (3–5).

Although on average participants showed positive PM-bias,we reasoned that those with en-

hanced sensitivity to reward magnitudes would exhibit lessof a bias. Based on neurocomputational

models and physiological data (6–9), we posited that magnitude representations are maintained in

orbitofrontal cortex (OFC), a brain area that is particularly sensitive to COMT effects (10). We

therefore predicted that met allele carriers would properly incorporate reward magnitudes into

their expected value computations and would therefore showless of a probability bias. There was

only weak evidence for such a finding in the last quarter of trials (F(1,67) = 2.5, p=.12; Figure S1);

this effect was significant however when measured across alltrials (F(1,67) = 5.2, p =.026).

Note that the above genetic interpretations rely on two components to PM-bias: a putative

striatal-NoGo bias that learns from high frequency of non-rewards and a putative prefrontal repre-
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sentation of reward magnitudes that can counteract this bias. This assumption implies that DRD2

and COMT effects independently contribute to PM-bias. Supporting this conclusion, when both

D2 and COMT genotypes were entered into the statistical model, D2 effects on PM-bias remained

significant (F(1,65) = 5.5, p =.02), and the COMT effects approached significance (F(1,65) = 3.3,

p=.07). (Across all trials, both D2 and COMT effects were significant each controlling for the

other; p< .02.) Indeed, D2 and COMT effects are additive: individualswith superior striatal D2

genetic function but poor prefrontal genetic function (T-val) show by far the strongest PM-bias,

whereas C-met individuals with worse striatal D2 but betterprefrontal function show effectively

no PM-bias (Figure S1d). This result suggests that PM-bias emerges both from a striatal-dependent

NoGo learning (loss avoidance), and prefrontal-dependentsensitivity to high magnitude rewards.

Alternative Kalman Filter Exploration Model

As mentioned above, the primary model assumed that subjectstrack the probability of obtaining a

reward prediction error separately for fast and slow responses. However, it is also possible that they

would track the magnitude of such prediction errors (or the magnitudes of raw rewards), and the

uncertainty thereof. In this case, the beta distribution would be inappropriate, and instead Gaussian

distributionsN(µ, σ2) can be used to represent the mean expected values for each response. The

Gaussian has the probability density function,
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The Kalman filter (11) is a Bayesian algorithm that can track the mean values of arbitrary

quantities (see Welch & Bishop 1995 (12) for an introduction and derivation). The filter is in many

ways similar to the classical Rescorla-Wagner delta rule (13) in that values are learned as a function

of the difference between prior estimates and observed outcomes, but instead of representing only

the best guess for the expected value of a quantity, it represents an entire distribution of guesses,

including the mean “best” guess, and the uncertainty about it (14, 15). We represented the mean

reward values for fast and slow responses, and updated thesevalues as follows for the selected

action (fast or slow):

µs,a(t + 1) = µs,a(t) + ks,a(t)[Rews,a(t) − µs,a(t)]

(In an alternative model we represented the mean reward prediction error values, replacing

Rews,a(t) with δs,a(t) above).
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wherek is the Kalman gain (effective learning rate),

ks,a(t) =
σs,a(t)

2

σs,a(t)2 + σ2
rew

,

σs,a(t) is the standard deviation of the Gaussian distribution, andσrew is the noise in the reward

signal. The posterior variance of the action taken is

σs,a(t + 1) = [1 − ks,a(t)]σs,a(t),

such that the uncertainty reduces with experience. This mechanism allows the model to estimate

the mean magnitude of rewards, or of reward prediction errors, for fast and slow responses as a

function of experience.

Note the Kalman filter requires additional parameters to initialize the means and variances

of the Gaussians (in contrast to the beta distributions which are initialized to be uniform). To

reduce the number of free parameters and to compare with the beta implementation, we initial-

izedµs,a(1) = 0 (i.e., the initial expected magnitude of prediction error is 0), and we initialized

σs,a(1) = σrew to be the standard deviation of the actual reward vector, providing a non-arbitrary

objective initial uncertainty without requiring an additional parameter (other reasonable values

produce similar results). This implies that the Kalman gain(learning rate) begins with a value of

0.5, and then decreases according to the Bayesian updating rule as a function of uncertainty. As

the standard deviation decreases, so does the gain. Once themeans and standard deviations are de-

rived, we then applied them in an identical fashion to that described above for beta implementation

(usingρ to scale the differences in the means to adapt RT in the exploitation model, andǫ to scale

the differences in standard deviations to drive exploration).

While this model did not fit the behavioral data as well as the beta distribution model, all genetic

effects showed identical patterns to that described in the main paper. For the exploit part of the

model, when estimating reward prediction error magnitudes, the DARPP-32 effect on relativeαG

to αN was significant at p = .02; the DRD2 was significant at p = .016, and the COMT gene dose

effect on uncertainty-based exploration was significant atp = .007. Similarly, when estimating raw

reward magnitudes, all effects held (DARPP32, p = .03; DRD2,p = .038, COMT gene-dose, p =

.01). No other parameters were modulated by genotype (p’s> 0.2).

Explore Model: Fits and Comparison to Foil Models

Relative to the base exploitation model, the uncertainty-based explore model provided a better fit

(according to AIC) overall. Notably, the improvement in fit was significant in met allele carriers
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(F[1,49] = 5.1, p = .029), but actually provided a poorer fit inval/val participants (F[1,18] = 7.5,

p = .01). This was reflected by a significant interaction, suchthat the change in model fit due to

the addition of an uncertainty-exploration term depended on COMT genotype (F[1,67] = 6.0, p =

.016; Figure S3).

This was not the case for either the Sutton (1990) (16) exploration bonus model or the lose-

switch model, neither of which showed a fit improvement relative to the base exploitation models

once penalized for additional parameters, and both clearlyinferior to the uncertainty model. (There

were also no effects of COMT on either of these models’ parameters).

The regression to the mean model was motivated by behavioralresults showing large regression

to the mean effects in this task (Figure S2), as described previously (2). This model did not clearly

fit better than the base model however. The reverse-momentummodel, which provided a more

local oscillation rule that allowed RT momentum to build in one direction before reversal, did

improve fit. However, when comparing this model fit to that of the uncertainty-explore model,

there was again a significant interaction by COMT genotype (F[1,67] = 4.7, p = .03). This was due

to the uncertainty-explore model providing a better fit thanthe reverse-momentum model only in

met/met participants (F[1,49] = 5.4, p = .02). Moreover, theCOMT gene-dose effect held when

comparingǫ relative to eitherξ (F[1,67] = 3.8, p = .05),κ (F[1,67] = 7.7, p = .007), orγ (F[1,67] =

6.4, p = .01; Figure 8b,c of main text). (In this analysis, z-scores were computed for each parameter

so that they can be compared in the same metric). The same gene-dose relationships help when

both uncertainty explore and one of the alternative models of trial-to-trial dynamics were included

in the same model.

Kalman Filter Model Results

While this model did not fit the behavioral data as well as the beta distribution model, all genetic

effects showed identical patterns to that described in the main paper. For the exploit part of the

model, when estimating reward prediction error magnitudes, the DARPP-32 effect on relativeαG

to αN was significant at p = .02; the DRD2 was significant at p = .016, and the COMT gene dose

effect on uncertainty-based exploration was significant atp = .007. Similarly, when estimating raw

reward magnitudes, all effects held (DARPP32, p = .03; DRD2,p = .038, COMT gene-dose, p =

.01). No other parameters were modulated by genotype (p’s> 0.2).
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Generative Model

While the presented models provide reasonable fits to data, it is also important to show that a rein-

forcement model is adaptive when it runs on its own. To this end, we fixed the model parameters

to reasonable values (K = 1500,λ = 0.2, ǫ = 3000,αG = αN = 0.3,ν = 0.2; ρ = 1000; Noise =

2000). The model selected its own responses with these parameters, and was rewarded with the

same reward probability and magnitude functions used with participants. 70 runs of the model

were simulated, and it clearly produced the adaptive pattern of results as shown in Figure S7.
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Cond/Group n DEV CEV IEV CEVR
COMT (met) 50 1810 (72) 2024 (71) 2353 (83) 2212 (91)
COMT (val/val) 19 1703 (142) 1870 (139) 2465 (170) 2467 (110)
DRD2 (T/T) 38 1798 (88) 1949 (90) 2437 (96) 2404 (104)
DRD2 (C) 31 1759 (96) 2018 (93) 2319 (122) 2132 (98)
DARPP-32 (T/T) 37 1697 (94) 2013 (83) 2414 (100) 2207 (107)
DARPP-32 (C) 27 1927 (92) 1857 (107) 2377 (133) 2365 (112)

Table 1:Response times (ms) in each task condition across all trials, broken down into genotypes for each
polymorphism. Values reflect mean (standard error).
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Param/Model Base Uncert Regress L-Switch Rev-Mom Exp-Bonus

K 1416.0 (48.0) 1357.5 (47.2) 1341.9 (49.8) 1407.6 (48.4) 1378.0 (47.5) 1406.3 (48.2)
λ 0.325 (.016) 0.34 (.016) 0.36 (.017) 0.33 (.016) 0.35 (.016) 0.33 (.016)

αG 0.25 (.04) 0.24 (.045) 0.247 (.04) 0.25 (.04) 0.25 (.04) 0.25 (.04)
αN 0.27 (.05) 0.28 (.05) 0.266 (.05) 0.27 (.05) 0.27 (.05) 0.27 (.05)
ρ 444.8 (51.7) 436.0 (53.5) 437.7 (50.6) 434.7 (51.8) 429.3 (50.6) 443.2 (51.4)
ν 0.11 (.01) 0.11 (.01) 0.11 (.01) 0.11 (.01) 0.11 (.01) 0.11 (.01)
ǫ – 2233.9 (290.9) – – – –
ξ – – 51.0 (7.8) – – –
κ – – – 10.5 (2.9) – –
γ – – – – 40.5 (4.9) –
θ – – – – 1.8 (0.2) –
ζ – – – – – 4.66 (2.0)

Table 2: Mean best-fitting parameters for different models. Base: Exploitation model (ie. no parameters for trial
to trial adaptation). Uncert: uncertainty-based exploration, with parameterǫ. Regress: regression to the mean, with
parameterξ; L-Switch: Lose-switch, with parameterκ. Values reflect mean (SE).
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Genotype Model n params SSE (x 1e3) AIC
val/val

Just K 1 15696 (20328) 3228.9 (26.7)
K, λ 2 68735 (3874) 3091.6 (12.8)

Exploit1 4 64460 (4239) 3080.9 (14.1)
Exploit2 5 58307 (4016) 3062.8 (13.6)
Exploit3 6 54371 (3838) 3050.7 (13.8)
Uncert 7 54112 (3827) 3051.8 (13.8)

L-Switch 7 54184 (3779) 3052.2 (13.7)
Exp-Bonus 7 54321 (3851) 3052.5 (13.9)

Regress 7 540738 (3857) 3051.5 (14.0)
Rev-Mom 8 53074 (3731) 3050.1 (13.7)
Kalman 7 54107 (3777) 3052.1 (13.6)

met
Just K 1 12578 (8929) 3138.9 (39.5)
K, λ 2 66438 (2636) 3030.7 (36.2)

Exploit1 4 64746 (2574) 3029.6 (36.0)
Exploit2 5 58157 (2276) 3010.7 (35.4)
Exploit3 6 54706 (2073) 3001.3 (35.1)
Uncert 7 53773 (2065) 2999.7 (35.0)

L-Switch 7 54650 (2071) 3003.1 (35.1)
Exp-Bonus 7 54653 (2075) 3003.1 (35.1)

Regress 7 54253 (2069) 3001.8 (35.2)
Rev-Mom 8 53775 (2036) 3002.0 (35.0)
Kalman 7 54927 (2054) 3004.3 (35.2)

Table 3:Model fits for val/val and met carriers. Exploit1 = Reinforcement learning model withαG andαN . Exploit2
= Exploit1 +ν. Exploit3 = Exploit 2 + Bayesian (i.e.ρ 6= 0). Uncert: uncertainty-based explore (ǫ 6= 0 ). L-Switch:
lose-switch (κ 6= 0). Exp-Bonus: Sutton (1990) Exploration bonus (ζ 6= 0). Regress: regression to mean (ξ 6= 0).
Rev-Mom: reverse momentum (γ,θ 6= 0). Kalman: Kalman filter with Normal distributions and uncertainty-based
explore. SSE = sum of squared error; AIC = Aikake’s Information Criterion. For both SSE and AIC, lower values
indicate better fit. n params = number of parameters. Values reflect mean (standard error).
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Figure 1: Relative within-subjects biases to prefer high probability over high magnitude, controlling for
equal expected value (CEVR - CEV). Values represent mean (standard error) in the last quarter of trials
in each condition.(a-c) DRD2 and COMT, but not DARPP-32, affected PM-bias.d) DRD2 and COMT
contributed additively to PM-bias, such that C-met participants with genotype exhibited smallest PM-bias
whereas T-val participants exhibited highest PM-bias.
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Figure 2: RT changes from one trial to the next reveal regression to the mean effects, whereby
prior fast and slow responses are associated with subsequent slowing and speeding, respectively.



Genetic Components to Exploration and Exploitation Frank et al 12

a) b)

hello

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

   
   

   
   

A
IC

val/val
val/met
met/met

COMT gene-dose effects
Improvement in fit by uncertainty

∆

−600 −400 −200 0 200 400 600
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000
Exploration, All Subs

Model Explore (ms)

R
T

 D
iff

 (
m

s)

Figure 3:a) Improvement in fit (∆ AIC; negative values indicate better fit) afforded by inclusion
of the uncertainty-explore term in the model relative to model without exploration.b) Scatter
plot of all RT swings (change in RT from one trial to the next) against model uncertainty-based
exploratory predictions. Met allele carriers are shown in magenta; val/val in black.
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Figure 4:a), b) Trajectory of prediction errors (δ) and Beta hyperparametersη andβ for a single subject
in DEV and IEV.η andβ accumulate with evidence obtained on each trial (positive and negative prediction
error, respectively), and are used to compute means and variances.δ is scaled to fit in the same axis.
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Figure 5:Response times as a function of trial number, same conventions as reported across all subjects in
the main text, separated according to genotype.
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Figure 6:Model fits for each genotype.
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Figure 7: RTs produced by the generative model with fixed parameters across 70 runs, same con-
vention as in the plots of model and subject RTs in the main text.


