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Additional Task Results: Probability-magnitude bias

As noted in the main text, the CEVR condition was includeddmpare with CEV as a measure
of probability-magnitude bias (PM-bias = CEVR - CEV). We halPM-bias to be positive across
all groups (p< .001; Figure S1), as participants avoided responding @afMEVR due to the low
reward probability at that time, consistent with loss-guan (1). Supporting this interpretation,
DRD2 T/T carriers, who showed enhanced NoGo learning assedeiy IEV,;;, above, also
showed relatively greater PM-bias than C carriers (F(1768)7, p =.03; Figure S1b). Their RTs
in the last block of CEVR were also significantly slower (fd], = 5.7, p = .02). Both IEY;;
and PM-bias were also elevated in non-medicated Parkiagmatients Z), consistent with their
performance in other learning paradigr8s).

Although on average participants showed positive PM-bigsyeasoned that those with en-
hanced sensitivity to reward magnitudes would exhibit tdssbias. Based on neurocomputational
models and physiological daté<9), we posited that magnitude representations are maimténe
orbitofrontal cortex (OFC), a brain area that is particyl@ensitive to COMT effects10). We
therefore predicted that met allele carriers would prgpartorporate reward magnitudes into
their expected value computations and would therefore $essvof a probability bias. There was
only weak evidence for such a finding in the last quarter afgrfF(1,67) = 2.5, p=.12; Figure S1);
this effect was significant however when measured acrossadd (F(1,67) = 5.2, p =.026).

Note that the above genetic interpretations rely on two comepts to PM-bias: a putative
striatal-NoGo bias that learns from high frequency of newards and a putative prefrontal repre-
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sentation of reward magnitudes that can counteract thss fibis assumption implies that DRD2
and COMT effects independently contribute to PM-bias. Swudpg this conclusion, when both
D2 and COMT genotypes were entered into the statistical mB@eeffects on PM-bias remained
significant (F(1,65) = 5.5, p =.02), and the COMT effects apphed significance (F(1,65) = 3.3,
p=.07). (Across all trials, both D2 and COMT effects werengigant each controlling for the
other; p< .02.) Indeed, D2 and COMT effects are additive: individwailth superior striatal D2
genetic function but poor prefrontal genetic function @)\wshow by far the strongest PM-bias,
whereas C-met individuals with worse striatal D2 but beptefrontal function show effectively
no PM-bias (Figure S1d). This result suggests that PM-breeyges both from a striatal-dependent
NoGo learning (loss avoidance), and prefrontal-depensiEmitivity to high magnitude rewards.

Alternative Kalman Filter Exploration Model

As mentioned above, the primary model assumed that sultfactsthe probability of obtaining a
reward prediction error separately for fast and slow respsenHowever, it is also possible that they
would track the magnitude of such prediction errors (or tlagnitudes of raw rewards), and the
uncertainty thereof. In this case, the beta distributionl®e inappropriate, and instead Gaussian
distributionsN (u, %) can be used to represent the mean expected values for eponges The
Gaussian has the probability density function,

1 _(a-p?
(& 2052
oy/(2m)

The Kalman filter {1) is a Bayesian algorithm that can track the mean values odfrainp
guantities (see Welch & Bishop 199582) for an introduction and derivation). The filter is in many
ways similar to the classical Rescorla-Wagner delta @i that values are learned as a function
of the difference between prior estimates and observedmes, but instead of representing only
the best guess for the expected value of a quantity, it reptesan entire distribution of guesses,
including the mean “best” guess, and the uncertainty alida#i 15. We represented the mean
reward values for fast and slow responses, and updated vagses as follows for the selected
action (fast or slow):

/’Ls,a(t + ]') = /’Ls,a(t) + ks,a(t) [R6w57a(t) - /”L57a(t)]

(In an alternative model we represented the mean rewardcpicederror values, replacing
Rew; ,(t) with 0, ,(t) above).
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wherek is the Kalman gain (effective learning rate),

0s.a(t)?
US,G (t)Z _'_ O-gew

ksa(t) =

Y

0s.4(t) is the standard deviation of the Gaussian distribution capgis the noise in the reward
signal. The posterior variance of the action taken is

Us,a(t + 1) = [1 - ks,a(t)]gs,a(t)a

such that the uncertainty reduces with experience. Thidharesm allows the model to estimate
the mean magnitude of rewards, or of reward prediction gyrior fast and slow responses as a
function of experience.

Note the Kalman filter requires additional parameters ttalize the means and variances
of the Gaussians (in contrast to the beta distributions vhie initialized to be uniform). To
reduce the number of free parameters and to compare withetiaeilnplementation, we initial-
ized 5 ,(1) = 0 (i.e., the initial expected magnitude of prediction er®0), and we initialized
0s5.4(1) = 0.¢ t0 be the standard deviation of the actual reward vectoxigirmy a non-arbitrary
objective initial uncertainty without requiring an additial parameter (other reasonable values
produce similar results). This implies that the Kalman g#&arning rate) begins with a value of
0.5, and then decreases according to the Bayesian updatengs a function of uncertainty. As
the standard deviation decreases, so does the gain. Onoe#ms and standard deviations are de-
rived, we then applied them in an identical fashion to thatdbed above for beta implementation
(usingp to scale the differences in the means to adapt RT in the dafitmi model, and to scale
the differences in standard deviations to drive explorgtio

While this model did not fit the behavioral data as well as @ blistribution model, all genetic
effects showed identical patterns to that described in thm paper. For the exploit part of the
model, when estimating reward prediction error magnituthess DARPP-32 effect on relative;
to ay was significant at p = .02; the DRD2 was significant at p = .0h6é,tae COMT gene dose
effect on uncertainty-based exploration was significapt=at007. Similarly, when estimating raw
reward magnitudes, all effects held (DARPP32, p =.03; DRD2,.038, COMT gene-dose, p =
.01). No other parameters were modulated by genotypex(9).

Explore Model: Fitsand Comparison to Foil M odels

Relative to the base exploitation model, the uncertairsyeld explore model provided a better fit
(according to AIC) overall. Notably, the improvement in fiasvsignificant in met allele carriers
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(F[1,49] = 5.1, p = .029), but actually provided a poorer fivai/val participants (F[1,18] = 7.5,
p = .01). This was reflected by a significant interaction, sinett the change in model fit due to
the addition of an uncertainty-exploration term depende€®MT genotype (F[1,67] = 6.0, p =
.016; Figure S3).

This was not the case for either the Sutton (199®) exploration bonus model or the lose-
switch model, neither of which showed a fit improvement re¢ato the base exploitation models
once penalized for additional parameters, and both cl@#dyior to the uncertainty model. (There
were also no effects of COMT on either of these models’ patarag

The regression to the mean model was motivated by behavesalts showing large regression
to the mean effects in this task (Figure S2), as describadqusgly (2). This model did not clearly
fit better than the base model however. The reverse-momemodel, which provided a more
local oscillation rule that allowed RT momentum to build ineodirection before reversal, did
improve fit. However, when comparing this model fit to that k¢ uncertainty-explore model,
there was again a significant interaction by COMT genoty|pk,6F] = 4.7, p = .03). This was due
to the uncertainty-explore model providing a better fit thiam reverse-momentum model only in
met/met participants (F[1,49] = 5.4, p = .02). Moreover, @@MT gene-dose effect held when
comparing relative to eitheg (F[1,67] = 3.8, p =.05)« (F[1,67] =7.7, p =.007), oy (F[1,67] =
6.4, p =.01; Figure 8b,c of main text). (In this analysis¢cpres were computed for each parameter
so that they can be compared in the same metric). The samedgseeelationships help when
both uncertainty explore and one of the alternative modeisad-to-trial dynamics were included
in the same model.

Kalman Filter Model Results

While this model did not fit the behavioral data as well as te@Mlistribution model, all genetic
effects showed identical patterns to that described in thim paper. For the exploit part of the
model, when estimating reward prediction error magnituttes DARPP-32 effect on relative;

to ay was significant at p = .02; the DRD2 was significant at p = .0h@é,the COMT gene dose
effect on uncertainty-based exploration was significaptat007. Similarly, when estimating raw
reward magnitudes, all effects held (DARPP32, p =.03; DRD2,.038, COMT gene-dose, p =
.01). No other parameters were modulated by genotype(§<).
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Generative M odel

While the presented models provide reasonable fits to dasaglso important to show that a rein-
forcement model is adaptive when it runs on its own. To thi eve fixed the model parameters
to reasonable valueg<(= 1500,\ = 0.2,¢ = 3000,aq = ay = 0.3,v = 0.2; p = 1000; Noise =
2000). The model selected its own responses with these ptgesnand was rewarded with the
same reward probability and magnitude functions used wattiggpants. 70 runs of the model
were simulated, and it clearly produced the adaptive patieresults as shown in Figure S7.
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Cond/Group n DEV CEV IEV CEVR

COMT (met) 50 | 1810 (72) | 2024 (71) | 2353 (83) | 2212 (91)
COMT (valival) | 19| 1703 (142)| 1870 (139)| 2465 (170)| 2467 (110)
DRD2 (T/T) 38| 1798 (88) | 1949 (90) | 2437 (96) | 2404 (104)
DRD2 (C) 31| 1759 (96) | 2018 (93) | 2319 (122)| 2132 (98)
DARPP-32 (T/T)| 37 | 1697 (94) | 2013 (83) | 2414 (100)| 2207 (107)
DARPP-32 (C) | 27 | 1927 (92) | 1857 (107)| 2377 (133)| 2365 (112)

Table 1:Response times (ms) in each task condition across all,thied&en down into genotypes for each
polymorphism. Values reflect mean (standard error).
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| Param/Model| Base | Uncert | Regress | L-Swittch | Rev-Mom | Exp-Bonus |
K 1416.0 (48.0)] 1357.5 (47.2)| 1341.9 (49.8) 1407.6 (48.4) 1378.0 (47.5) 1406.3 (48.2)
) 0.325(.016)| 0.34(.016) | 0.36(.017) | 0.33(.016) | 0.35(.016) | 0.33(.016)
oG 0.25(04) | 0.24(045) | 0.247(04) | 0.25(04) | 025(04) | 0.25(.04)
an 0.27 (.05) 0.28 (05) | 0.266(05) | 0.27(05) | 0.27(.05) | 0.27(.05)
P 4448 (51.7)| 436.0(53.5) | 437.7(50.6) | 434.7 (51.8) | 429.3(50.6) | 443.2 (51.4)
v 0.11 (.01) 0.11 (.01) 0.11(01) | 0.11(01) | 0.11(01) | 0.11(01)
¢ - 2233.9 (290.9) - - - -
3 - - 51.0 (7.8) - - -
K - - - 105 (2.9) - -
~ - - - - 405 (4.9) -
9 - - - - 18(0.2) -
C - - - - - 4.66 (2.0)

Table 2: Mean best-fitting parameters for different models. Basepl@tation model (ie. no parameters for trial
to trial adaptation). Uncert: uncertainty-based explorgtwith parametee. Regress: regression to the mean, with
parametet; L-Switch: Lose-switch, with parameter Values reflect mean (SE).
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Genotype | Model | nparams | SSE (x 1€3) | AlC

val/val
Just K 1 15696 (20328)] 3228.9 (26.7)
K, \ 2 68735 (3874) | 3091.6 (12.8)
Exploitl 4 64460 (4239) | 3080.9 (14.1)
Exploit2 5 58307 (4016) | 3062.8 (13.6)
Exploit3 6 54371 (3838) | 3050.7 (13.8)
Uncert 7 54112 (3827) | 3051.8 (13.8)
L-Switch 7 54184 (3779) | 3052.2 (13.7)
Exp-Bonus 7 54321 (3851) | 3052.5 (13.9)
Regress 7 540738 (3857) 3051.5 (14.0)
Rev-Mom 8 53074 (3731) | 3050.1 (13.7)
Kalman 7 54107 (3777) | 3052.1 (13.6)

met
JustK 1 12578 (8929) | 3138.9 (39.5)
K, \ 2 66438 (2636) | 3030.7 (36.2)
Exploitl 4 64746 (2574) | 3029.6 (36.0)
Exploit2 5 58157 (2276) | 3010.7 (35.4)
Exploit3 6 54706 (2073) | 3001.3 (35.1)
Uncert 7 53773 (2065) | 2999.7 (35.0)
L-Switch 7 54650 (2071) | 3003.1 (35.1)
Exp-Bonus 7 54653 (2075) | 3003.1 (35.1)
Regress 7 54253 (2069) | 3001.8 (35.2)
Rev-Mom 8 53775 (2036) | 3002.0 (35.0)
Kalman 7 54927 (2054) | 3004.3 (35.2)

Table 3:Model fits for val/val and met carriers. Exploitl = Reinfoncent learning model with. anday . Exploit2

= Exploitl +v. Exploit3 = Exploit 2 + Bayesian (i.e0 # 0). Uncert: uncertainty-based exploee#£ 0 ). L-Switch:
lose-switch & # 0). Exp-Bonus: Sutton (1990) Exploration bongsA4 0). Regress: regression to meanA 0).
Rev-Mom: reverse momenturny,f # 0). Kalman: Kalman filter with Normal distributions and untzénty-based
explore. SSE = sum of squared error; AIC = Aikake’s InformatCriterion. For both SSE and AIC, lower values
indicate better fit. n params = number of parameters. Vakfésct mean (standard error).
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Figure 1:Relative within-subjects biases to prefer high probabitiver high magnitude, controlling for
equal expected value (CEVR - CEV). Values represent meandatd error) in the last quarter of trials
in each condition.(a-c) DRD2 and COMT, but not DARPP-32, affected PM-bia). DRD2 and COMT
contributed additively to PM-bias, such that C-met pgpacits with genotype exhibited smallest PM-bias
whereas T-val participants exhibited highest PM-bias.
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Trial-to-trial RT adaptation
after fast/slow responses
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Figure 2: RT changes from one trial to the next reveal regras® the mean effects, whereby
prior fast and slow responses are associated with subsesjoeing and speeding, respectively.
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Figure 3:a) Improvement in fit \ AIC; negative values indicate better fit) afforded by inatuns
of the uncertainty-explore term in the model relative to elodithout exploration.b) Scatter
plot of all RT swings (change in RT from one trial to the nexgaast model uncertainty-based
exploratory predictions. Met allele carriers are shown agenta; val/val in black.
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Figure 4:a), b) Trajectory of prediction errorsff and Beta hyperparametessand3 for a single subject
in DEV and IEV.n and 3 accumulate with evidence obtained on each trial (positicereegative prediction
error, respectively), and are used to compute means araheas . is scaled to fit in the same axis.
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Figure 5:Response times as a function of trial number, same convendis reported across all subjects in
the main text, separated according to genotype.
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Figure 6:Model fits for each genotype.
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Figure 7: RTs produced by the generative model with fixedrpatars across 70 runs, same con-
vention as in the plots of model and subject RTs in the main tex



