Supporting Information

Claesson et al. 10.1073/pnas.1000097107

SI Materials and Methods

Subject Recruitment. Subjects were clinically examined at either of two local hospitals that serve a population base of ~481,000 in the Cork city and county region. The subjects were defined as (*i*) community-dwelling (control healthy), (*ii*) attending an outpatient day hospital (out-patient), (*iii*) in short-term rehabilitation hospital care (Rehabilitation; under 6-wk stay), or (*iv*) in long-term institutionalized care (Long stay; more than 6 wk). The mean age of the subjects was 78 (\pm 7) y, with a range of 65–96 y. A full-analysis proforma was also applied to all subjects returning after 3 mo to allow for the identification of changes in lifestyle or health status or major dietary changes during this time.

Sequence-Based Microbiota Analysis and Phylogeny. The 16S rRNA V4 amplicons were sequenced on a 454 Genome Sequencer FLX platform (Roche Diagnostics) according to 454 protocols. Raw sequencing reads were quality trimmed according to published recommendations (1) using a locally installed version of the Ribosomal Database Project (RDP) Pyrosequencing Pipeline (2) applying the following criteria: (i) exact matches to primer sequences and barcode tags, (ii) no ambiguous bases (Ns), and (iii) read-lengths no shorter than 150 bp. For large-scale assignments into the new Bergey bacterial taxonomy (3), we used the Naïve Bayesian Classifier (RDP classifier), which provides rapid taxonomic classifications from domain to genus of both partial and full-length rRNA gene sequences along with bootstrap-like confidence estimates (4). Our choice of 50% as confidence-value threshold was based on what was found suitable for V4 amplicons from the human gut environment (5). Trimmed sequences

- Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. *Genome Biol* 8:R143.
- Cole JR, et al. (2009) The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. *Nucleic Acids Res* 37:D141–D145.
- Lilburn TG, Garrity GM (2004) Exploring prokaryotic taxonomy. Int J Syst Evol Microbiol 54:7–13.

with their classifications were imported into a MySQL database for efficient storage and advanced querying. Pyrosequencing reads were aligned using Infernal (6) and associated covariance models obtained from the Ribosomal Database Project Group. These were based on secondary structural information from fulllength 16S rRNA genes sequences of 508 fully sequenced genomes and were further trimmed to encompass only the V4 region to increase alignment speeds.

Statistical Analysis. The average proportion of total reads assigned to the different phyla and genera was compared according to antibiotic use for the 161 baseline samples using the nonparametric Mann–Whitney test. Although the data are more suitable to the nonparametric methods, independent-sample t tests were also conducted in tandem with the Mann–Whitney tests and provided the same conclusions, unless indicated otherwise in *Results*.

The average UniFrac distances within the 26 individuals from time 0 to time 3 mo were compared with the average between individual UniFrac distances at both time 0 and time 3 mo using robust t tests to allow for dependence between observations. These comparisons were made for both the weighted and unweighted UniFrac distances.

The change in the proportion of reads assigned to the different phyla and genera from time 0 to time 3 mo was compared according to antibiotic use for the 26 subjects who provided samples at both time points using the nonparametric Mann–Whitney test. Again, independent sample t tests were also conducted in tandem and provided the same conclusions as the Mann–Whitney test, unless indicated otherwise in *Results*.

- Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol* 73:5261–5267.
- Claesson MJ, et al. (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. *PLoS ONE* 4:e6669.
- Nawrocki EP, Eddy SR (2007) Query-dependent banding (QDB) for faster RNA similarity searches. PLOS Comput Biol 3:e56.

Fig. S1. Aggregate microbiota composition at the level of phylum, *Clostridium* cluster level, and genus, as indicated. Only the 4 most populated phyla (A–C), 8 most populated *Clostridium* clusters (*D*–*F*), and 15 largest genera (*G*–*I*) are shown.

DNAS

Fig. S2. Microbiota composition, at phylum level, in 139 (118 time 0 and 21 time 3 mo) fecal samples from elderly Irish subjects who had not been treated with antibiotics (*A*), 161 time-0 samples from subjects either treated or not treated with antibiotics (*B*), and 118 time-0 samples from subjects not treated with antibiotics (*C*). Only the seven largest phyla are shown. Samples were ordered by the proportion of all reads assigned to phylum *Bacteroidetes* to illustrate the dramatic interindividual variation.

NA C

Fig. S3. Interindividual variation in the proportions of *Clostridium* clusters in 139 (118 time 0 and 21 time 3 mo) fecal samples from elderly Irish subjects who had not been treated with antibiotics (*A*), 161 time-0 samples from subjects either treated or not treated with antibiotics (*B*), and 118 time-0 samples from subjects not treated with antibiotics (*C*). Samples were ordered by the proportion of all reads assigned to *Clostridium* cluster IV to illustrate the dramatic interindividual variation.

DNA C

<

Fig. S4. Interindividual variation in the proportions of the genera *Faecalibacterium* and *Ruminococcus* in 139 (118 time 0 and 21 time 3 mo) fecal samples from elderly Irish subjects who had not been treated with antibiotics (*A*), 161 time-0 samples from subjects either treated or not treated with antibiotics (*B*), and 118 time-0 samples from subjects not treated with antibiotics (*C*). Samples are ordered by the proportion of all reads assigned to *Faecalibacterium* to illustrate the dramatic interindividual variation.

PNAS

Fig. S5. Weighted (A) and unweighted (B) UniFrac tree of 161 time-0 fecal microbiota composition datasets and 26 time 3-mo datasets; paired samples that colocalize in the tree are highlighted in red and with asterisks, and unpaired samples are in green and with arrows. Scale bar indicates a weighted UniFrac distance of 0.1 and 0.01 for weighted and unweighted, respectively.

Fig. S6. Variation in the microbiota between time-0 and time 3-mo samples from 26 subjects: phylum assignments (A) and genus assignments (B). The first of the three sections in both panels contains paired samples that were not closest neighbors in either the unweighted UniFrac tree or the weighted tree. The second section contains samples that only colocated in the unweighted tree. The third section contains samples that colocated in both trees.

PNAS PNAS

Table S1. Distribution of 161 T0 and 26 T3 study participants by antibiotic use and age

	Age (y)					
	Mean (SD)	Median (quartiles 1, 3)	Range (min, max)			
All T0 subjects ($n = 161$)	78 (7)	78 (72, 84)	65, 96			
T0 subjects – antibiotic users ($n = 43$)	81 (7)	81 (81, 85)	68, 96			
T0 subjects – antibiotic-free ($n = 118$)	77 (7)	77 (72, 84)	65, 95			
All T3 subjects ($n = 26$)	73 (7)	72 (67, 77)	65, 88			
T3 subjects – antibiotic users $(n = 5)$	71 (5)	68 (67, 75)	67, 78			
T3 subjects – antibiotic-free ($n = 21$)	73 (7)	72 (67, 77)	65, 88			

Table S2. Core microbiota identified in the ELDERMET study and in healthy adults from four previously published studies

		Age (mean ±	Total number of V4	Number of unique sequences	Total number of unique	Subject	Core proportion: number of unique	Sum of total number of unique	Core proportion: sum of total number of
	N	SD years)	sequences	in core	sequences	specificity*	sequences	sequences	unique sequences
ELDERMET	118	77.3 ± 7.2	3,981,241	406	1,078,207	85.8%	0.04%	1,581,571	1.8%
ELDERMET controls	9	35.0 ± 6	358,096	2,101	125,616	91.4%	1.7%	149,993	9.3%
Tap et al. (1)	17	37.0 ± 7.2	10,364	56	2,781	85.9%	2.0%	4,053	15.6%
Turnbaugh et al. (2)	30	20 twins (21–32 y) and their mothers [†]	7,664	24	2,271	87.1%	1.1%	3,486	13.7%
Zhang et al. (3)	6	36.2 ± 5.8	869	18	345	83.8%	5.2%	429	14.9%
Li et al. (4)	5	38.2 ± 17.4	4,693	64	917	84.1%	7.0%	1,171	20.2%

*Proportion of unique sequences present in only one subject.

[†]Subject ages not published.

PNAS PNAS

Tap J, et al. (2009) Towards the human intestinal microbiota phylogenetic core. *Environ Microbiol* 11:2574–2584.
Turnbaugh PJ, et al. (2009) A core gut microbiome in obese and lean twins. *Nature* 457:480–484.

3. Zhang H, et al. (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106:2365–2370.

4. Li M, et al. (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105:2117–2122.

Table S3.	Breakdown of phy	logenetic classif	ications and top I	BLAST hits in	າ the RDP dat	abase for uniqu	le sequences	specific to the elder	ſу
subjects in	the ELDERMET stu	dy compared w	ith core microbio	ta from you	inger subjects	in this as well	as the four	published studies	

Phylum	Class	Genus	Clostridium cluster	Best BLAST hit against species in RDP_v10.16	ldentity (%)	BLAST E-value
Bacteroidetes	Bacteroidetes	Rikenella		Alistipes indistinctus	100	3.0E-
Bacteroidetes	Bacteroidetes	Alistipes		Alistipes finegoldii	100	119 2.0E- 123
Bacteroidetes	Bacteroidetes	Alistipes		Alistipes massiliensis	99.38	1.0E-84
Bacteroidetes	Bacteroidetes	Alistipes		Alistipes onderdonkii	100	4.0E-
Bacteroidetes	Bacteroidetes	Alistipes		Alistipes putredinis	96.43	125 2.0E- 108
Bacteroidetes	Bacteroidetes	Alistipes		Alistipes shahii	99.55	2.0E-
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides caccae	100	123 2.0E-
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides dorei	100	9.0E-
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides fragilis	100	123 9.0E-
De ete ve idete e	Destausidates	De stove idea		De stave idea avetua	100	123
Bacteroidetes	Bacteroidetes	Bacterondes		Bacteroldes Ovalus	100	2.0E- 123
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides thetaiotaomicron	100	2.0E- 123
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides uniformis	100	4.0E-
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides vulgatus	100	125 2.0E- 123
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides xylanisolvens	100	2.0E-
Bacteroidetes	Bacteroidetes	Bacteroides		Odoribacter splanchnicus	99.54	123 2.0E-
Bacteroidetes	Bacteroidetes	Parabacteroides		Parabacteroides distasonis	100	120 3.0E- 113
Bacteroidetes	Bacteroidetes	Parabacteroides		Parabacteroides merdae	100	2.0E- 123
Firmicutes	Clostridia	Anaerostipes		Anaerosporobacter mobilis	94.98	7.0E-96
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Bacteroides xylanolyticus	98.16	9.0E- 123
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Blautia luti	99.55	7.0E- 102
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Blautia schinkii	95.93	1.0E-81
Firmicutes Firmicutes	Clostridia	Peptostreptococcaceae Incertae Sedis	XI XIVa	Clostridium bartlettii Clostridium clostridioforme	100 97 7	2.0E-92 3.0E-
- mineates	clostitula		, ava		57.7	113
Firmicutes	Erysipelotrichi	Catenibacterium	XVIII	Clostridium cocleatum	92.24	1.0E-81
Firmicutes	Clostridia	Lachnospiraceae incertae Sedis	Xiva	Clostriaium indolis	94.47	9.0E- 123
Firmicutes	Clostridia	Peptostreptococcaceae Incertae Sedis	XI	Clostridium ruminantium	98.61	2.0E- 113
Firmicutes	Clostridia	Coprococcus		Coprococcus catus	100	2.0E-
Firmicutes	Clostridia	Dorea	XIVa	Coprococcus comes	100	120 9.0E- 123
Firmicutes	Clostridia	Dorea	XIVa	Dorea longicatena	99.55	2.0E- 123
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Eubacterium eligens	93.55	2.0E- 123
Firmicutes	Clostridia	Papillibacter	XIVa	Eubacterium hallii	98.18	2.0E-
Firmicutes	Clostridia	Roseburia	XIVa	Eubacterium rectale	100	123 2.0E- 120
Firmicutes	Clostridia	Ruminococcaceae Incertae Sedis	IV	Eubacterium siraeum	100	2.0E-89

PNAS

DNAS DNAS

Table S3. Cont.

PNAS PNAS

			Clostridium	Best BLAST hit against		BLAST
Phylum	Class	Genus	cluster	species in RDP_v10.16	ldentity (%)	E-value
Firmicutes	Clostridia	Faecalibacterium	IV	Faecalibacterium prausnitzii	100	2.0E-
Firmicutes	Clostridia	Sporobacter	IV	Oscillospira guilliermondii	94.66	123 9.0E-
Firmicutes	Clostridia	Roseburia	XIVa	Roseburia faecis	100	123 4.0E-
Firmicutes	Clostridia	Roseburia	XIVa	Roseburia hominis	100	125 3.0E-
Firmicutes	Clostridia	Roseburia	XIVa	Roseburia intestinalis	100	119 2.0E-
Firmicutes	Clostridia	Roseburia	XIVa	Roseburia inulinivorans	100	123 6.0E-
Firmicutes	Clostridia	Ruminococcus	IV	Ruminococcus bromii	100	121 6.0E-
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Ruminococcus lactaris	97.24	121 2.0E-
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Ruminococcus obeum	100	123 2.0E-
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Ruminococcus torques	99.09	123 1.0E-
Firmicutes	Clostridia	Sporobacter		Sporobacter termitidis	93.63	106 2.0E-
Proteobacteria	Betaproteobacteria	Thiobacter		Parasutterella excrementihominis	100	123 1.0E- 118

Table S4. Breakdown of phylogenetic classifications and top BLAST hits in the RDP database for unique sequences specific to younger subjects compared with core microbiota from younger subjects in this as well as the four published studies

Phylum	Class	Genus	Clostridium cluster	Best BLAST hit against species in RDP_v10.16	Identity (%)	BLAST E-value
Bacteroidetes	Bacteroidetes	Bacteroides		Bacteroides vulgatus	100	4.0E-125
Firmicutes	Clostridia	Anaerostipes		Anaerosporobacter mobilis	95.07	3.0E-98
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Blautia luti	99.56	1.0E-121
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Blautia schinkii	95.98	1.0E-103
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Clostridium clostridioforme	97.77	1.0E-103
Firmicutes	Erysipelotrichi	Catenibacterium	XVIII	Clostridium cocleatum	92.38	6.0E-84
Firmicutes	Clostridia	Sporobacter	III	Clostridium termitidis	98.01	4.0E-125
Firmicutes	Clostridia	Dorea		Coprococcus comes	100	4.0E-125
Firmicutes	Clostridia	Dorea	XIVa	Dorea formicigenerans	99.55	2.0E-123
Firmicutes	Clostridia	Dorea	XIVa	Dorea longicatena	99.56	6.0E-121
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Eubacterium hallii	98.21	9.0E-120
Firmicutes	Clostridia	Roseburia	XIVa	Eubacterium rectale	100	4.0E-125
Firmicutes	Clostridia	Subdoligranulum	IV	Faecalibacterium prausnitzii	95.67	4.0E-94
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Ruminococcus lactaris	97.32	8.0E-111
Firmicutes	Clostridia	Lachnospiraceae Incertae Sedis	XIVa	Ruminococcus obeum	100	4.0E-125