Supporting Information

An et al. 10.1073/pnas.1001501107

SI Materials and Methods

Recipes for the Rich Medium and the Minimal Medium. *Rich medium* (*per liter*). Twenty grams proteose peptone, 5 g yeast extract, 5 g NaCl, 5 g glucose, 5 g K₂HPO₄, 0.5 g L-cysteine, 5 mg hemi, and 2.5 μ L vitamin K₁.

Minimal medium (per liter). One gram $(NH_4)_2SO_4$, 1 g Na₂CO₃, 5 g glucose, 0.5 g L-cysteine, 5 mg hemin, 2.5 μ L vitamin K₁, 2 mg FeSO₄·7H₂O, 5 μ g vitamin B₁₂, and 20 mL mineral solution (per liter: 18 g KH₂PO₄, 18 g NaCl, 530 mg CaCl₂·2H₂O, 400 mg MgCl₂·6H₂O, 200 mg MnCl₂·4H₂O, and 20 mg CoCl₂·6H₂O).

Fig. S1. Myriocin-treated *B. fragilis* cells have diminished sphingolipid production. Electrospray ionization mass spectra (ESI/MS) of lipids extracted from wildtype *B. fragilis* cells that were grown (*A*) without or (*B*) with added myriocin. In presence of myriocin, the relative abundances of the molecules represented by the two peaks at *m*/*z* 542.4 and 556.5 in ESI/MS are greatly reduced. The reduction of the peak area is calculated to be 77% and 68%, respectively. Further analyses of these two peaks by tandem mass spectra (Figs. S2 and S3) show that they stand for ceramide-like structures (phytoceramide). ESI/MS was performed with three separate 5-µL injections of samples into the ionization chamber of a mass spectrometer (Thermo Finnigan TSQ 7000). The ESI/MS is a triple quadrupole mass spectrometer, operating under positive ionization mode.

Fig. S2. Tandem mass spectra of the peaks at (A) m/z = 542.4 and (B) m/z = 556.5 acquired at 15 eV. Only one structure is proposed for each ion fragment. Isomeric structures are not shown.

Fig. S3. Tandem mass spectra of the peaks at (A) m/z = 542.4 and (B) m/z = 556.5 acquired at 35 eV and 40 eV, respectively. Only one structure is proposed for each ion fragment. Isomeric structures are not shown.

Table S1.	Conservation of	serine palmito	/l transferase	orthologs	in Bacteroides	and related
genera						

Organisms	Score	E value
Porphyromonas gingivalis W83 [CFB group bacteria] taxid 242619	192	5E-47
Porphyromonas gingivalis ATCC 33277 [CFB group bacteria] taxid 431947	191	7E-47
Porphyromonas endodontalis ATCC 35406 [CFB group bacteria] taxid 553175	189	2E-46
Parabacteroides merdae ATCC 43184 [CFB group bacteria] taxid 411477	187	1E-45
Bacteroides caccae ATCC 43185 [CFB group bacteria] taxid 411901	187	1E-45
Bacteroides finegoldii DSM 17565 [CFB group bacteria] taxid 483215	187	1E-45
Parabacteroides johnsonii DSM 18315 [CFB group bacteria] taxid 537006	187	2E-45
Bacteroides ovatus ATCC 8483 [CFB group bacteria] taxid 411476	187	2E-45
Bacteroides sp. D2 [CFB group bacteria] taxid 556259	186	2E-45
Prevotella veroralis F0319 [CFB group bacteria] taxid 649761	186	3E-45
Bacteroides sp. D1 [CFB group bacteria] taxid 556258	186	4E-45
Bacteroides sp. 2_1_22 [CFB group bacteria] taxid 469588	186	4E-45
Bacteroides sp. 2_2_4 [CFB group bacteria] taxid 469590	186	4E-45
Bacteroides sp. 2_1_7 [CFB group bacteria] taxid 457388	181	6E-44
Parabacteroides distasonis ATCC 8503 [CFB group bacteria] taxid 435591	181	6E-44
Parabacteroides sp. D13 [CFB group bacteria] taxid 563193	181	6E-44
Bacteroides sp. 2_1_33B [CFB group bacteria] taxid 469589	181	6E-44
Bacteroides fragilis NCTC 9343 [CFB group bacteria] taxid 272559	179	4E-43
Bacteroides sp. 3_2_5 [CFB group bacteria] taxid 457392	179	4E-43
Bacteroides sp. 2_1_16 [CFB group bacteria] taxid 469587	179	4E-43
Bacteroides fragilis YCH46 [CFB group bacteria] taxid 295405	179	4E-43
Prevotella bivia JCVIHMP010 [CFB group bacteria] taxid 553171	177	1E-42
Prevotella bergensis DSM 17361 [CFB group bacteria] taxid 585502	177	1E-42
Bacteroides fragilis 3_1_12 [CFB group bacteria] taxid 457424	176	3E-42
Bacteroides eggerthii DSM 20697 [CFB group bacteria] taxid 483216	175	4E-42
Bacteroides stercoris ATCC 43183 [CFB group bacteria] taxid 449673	175	6E-42
Sphingobacterium spiritivorum ATCC 33300 [CFB group bacteria] taxid 525372	173	2E-41
Sphingobacterium spiritivorum ATCC 33861 [CFB group bacteria] taxid 525373	173	2E-41
Sphingobacterium spiritivorum [CFB group bacteria] taxid 258	173	2E-41
Bacteroides uniformis ATCC 8492 [CFB group bacteria] taxid 411479	172	3E-41
Prevotella tannerae ATCC 51259 [CFB group bacteria] taxid 626522	172	4E-41
Prevotella melaninogenica ATCC 25845 [CFB group bacteria] taxid 553174	172	5E-41
Pedobacter heparinus DSM 2366 [CFB group bacteria] taxid 485917	172	6E-41
Pedobacter sp. BAL39 [CFB group bacteria] taxid 391596	171	1E-40
Bacteroides sp. D20 [CFB group bacteria] taxid 585543	171	1E-40
Chitinophaga pinensis DSM 2588 [CFB group bacteria] taxid 485918	169	2E-40
Bacteroides thetaiotaomicron VPI-5482 [CFB group bacteria] taxid 226186	168	6E-40
Bacteroides sp. 1_1_6 [CFB group bacteria] taxid 469586	168	6E-40
Bacteroides coprocola DSM 17136 [CFB group bacteria] taxid 470145	168	8E-40
Bacteroides intestinalis DSM 17393 [CFB group bacteria] taxid 471870	167	8E-40
Bacteroides cellulosilyticus DSM 14838 [CFB group bacteria] taxid 537012	167	8E-40
Prevotella copri DSM 18205 [CFB group bacteria] taxid 537011	167	9E-40
Bacteroides dorei DSM 17855 [CFB group bacteria] taxid 483217	167	1E-39
Bacteroides sp. 9_1_42FAA [CFB group bacteria] taxid 457395	167	1E-39
Bacteroides dorei 5_1_36/D4 [CFB group bacteria] taxid 556260	167	1E-39
Bacteroides sp. 3_1_33FAA [CFB group bacteria] taxid 457391	167	1E-39
Bacteroides vulgatus ATCC 8482 [CFB group bacteria] taxid 435590	167	1E-39
Bacteroides sp. 4_3_47FAA [CFB group bacteria] taxid 457394	167	1E-39

Homology is compared with human serine palmitoyl transferase enzyme subunit SPTLC1 by BLASTP (2.2.22+) standard search. CFB, Cytophaga-Flavobacteria-Bacteroides.

PNAS PNAS