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Online Supplements: Expanded Methods 1 

 2 

Coronary flow (Fig. 2B) was analyzed (1) subject to prescribed boundary conditions (Fig. 2E; 3 

Table 1) and myocardium/vessel interaction (Eq. 3; Fig. 2D). To that end, the network anatomy 4 

has been reconstructed (Fig. 2A) from morphometric data (14 -16); and a vessel-in-myocardium 5 

micromechanical sub-model (1) was used to describe the in-situ vessel compliance (Eq.2; Fig. 6 

2C). 7 

 8 

I. Anatomic Reconstruction  9 

Reconstruction relied on the morphometric data (14-16) and consisted of two stages: 10 

reconstruction of microvascular networks, followed by integration into a transmural coronary 11 

network. 12 

Microvascular networks were reconstructed in an iterative manner, relying on data-based (14-16) 13 

vessel lengths, connectivity, and capillary branching pattern, and subject to two constraints: i) the 14 

measured (14) distance between arteriolar and venous domains and ii) the ratio between arteriolar 15 

and venous segments (14). Initially, one arteriole and two venules were located 510 μm apart. 16 

They were assigned order 1 and order -1, respectively (15, 16). Then, arterial and venous 17 

capillaries (14) were attached to these corresponding vessels, according to connectivity data (15, 18 

16). Vessels lengths were assigned according to the measured statistical data (14-16). Additional 19 

connecting and cross-connecting capillaries were connected to these capillaries according to 20 

branching patterns statistics (14). Finally, additional arterioles and venules were connected to the 21 

previously posed respective vessels, thus increasing the orders of the input and output vessels. 22 

This process was iterated until capillaries bridged the gaps between arteriolar and venous 23 

domains, resulting in a network of 174 micro-vessels (Fig. 2A) fed by one order 3 arteriole and 24 

two order –3 venules. The network capillary density is roughly 2800 capillaries/mm2, consistent 25 

with measured data (3, 21). A student T-test showed (1) no statistically-significant differences 26 

between the data and reconstructed network.   27 

Integration into a coronary network: To reduce the computational load associated with a full-28 

scale network (13) but still retain realistic morphometric features, reconstructed microvascular 29 

networks were placed at representative transmural locations, depending on the assumed anatomy 30 

(see methods). The basic configuration assumes transmurally homogeneous vessels density. 31 

Hence, microvascular networks were evenly placed at subepicardium (Myocardial Relative 32 

Depth, MRD=0.125), midwall (MRD=0.325 and MRD=0.625) and subendocardium 33 

(MRD=0.875). In contrary, to simulate twice higher subendocardial vessel density, each 34 
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microvascular network placed at subepicardium was matched by two subendocardial 35 

microvascular networks. 36 

 All microvascular networks were interconnected via intramyocardial arterial and venous 37 

tree-like networks and linked with the major epicardial vessels. The latter networks, taken to be 38 

symmetric and dichotomous, were reconstructed based on the morphometric data (15, 16), but 39 

assigned identical daughter vessels diameters, lengths and outlet flow conditions at each 40 

bifurcation. The MRD of interconnecting vessels was assigned intermediate values, depending on 41 

their transmural location. The symmetric arterial tree most proximal artery was chosen to be of 42 

order 8, since these arteries are the first to penetrate the cardiac wall (13). The number of 43 

generations arising from this artery, and the order of each segment in the arterial tree were 44 

assigned based on connectivity and segment-to-element data (16). The order of the most distal 45 

vessels in the arterial tree was set to 4, thus matching the order of the reconstructed 46 

microvascular inlet arteriole. The length of each segment in the tree was assigned to fit the 47 

statistical data (16), while maintaining monotonic reduction of diameters along the element. The 48 

venous tree was reconstructed in a similar manner. The reconstructed network has 906 segments, 49 

representing the flow in characteristic myocardial layers. 50 

 51 

II. Flow Simulation:  52 

Flow in each vessel was analyzed using a three-element Windkessel model consisting of two 53 

identical non-linear resistors and one non-linear capacitor (Fig. 2B). This lumped segment flow 54 

model was previously validated (12) against a distributive (5) model of a coronary vessel. At 55 

each network bifurcation, mass conservation implies that the sum of discharges Qjk should 56 

vanish, i.e.: 57 
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Here j
IVP denotes the intravascular pressure in each of the 3 vessels composing the kth bifurcation, 59 

and k
bifP  is the bifurcation pressure. The resistance of each vessel n ( ℜ n) is calculated from 60 

Poiseuille's law, i.e.: 61 
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where n
inP and n

outP denote vessel inlet and outlet pressures, respectively. L, D and μ are the vessel 63 

length, diameter and blood apparent viscosity, respectively. Vessel diameter D varies during the 64 
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cardiac cycle due to the time-varying intravascular and extravascular (Eq. 3) pressures, according 65 

to vessel in-situ compliance (Eq. 2). Viscosity was taken to vary with diameter and hematocrit 66 

(Table 1), following Pries et al. (20). Hence both vessel and network resistances are highly non-67 

linear. 68 

Conservation of mass requires that the difference between vessel in and out discharges 69 

(Qn
in and Qn

out, respectively) should equal the time-derivative of the vessel’s volume (Vn), i.e.: 70 
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Computational Scheme: Since each bifurcation-pressure bifP equals either inP  or outP  of the 72 

vessels forming that bifurcation, Eqs. S1-S3 can be combined, resulting in a system of N non-73 

linear ordinary differential equations (N denotes the number of network vessels), which was 74 

iteratively solved using the MATLAB® ode15s solver until satisfying periodicity condition. This 75 

was fulfilled using the shooting method, i.e., after an initial guess of the intravascular pressure in 76 

each vessel, the numerical scheme was carried out for several cardiac cycles until solutions at 77 

consecutive cycles converged to within preset tolerance. This tolerance was set as follows: the 78 

maximum allowed pressure difference (at any of the vessels) between the beginning and the end 79 

of a cardiac cycle should be <0.1 mmHg. Numerical accuracy of the final solution was 80 

ascertained based on the criteria that the maximum difference between total flows into the 81 

feeding artery and out of its draining vein during a cardiac cycle was <5% of the total inflow.   82 

Boundary Conditions: were adopted from measured data rather than being evaluated from a 83 

combined heart-vessel model, in view of inevitable approximations required in such a complex 84 

model and the likewise inevitable need to adjust the model parameters to fit the data.  85 

Inlet, Outlet and Left Ventricle Pressures: PA(t), PV(t) and LVP(t) respectively, were taken from 86 

Hurst & Logue (11). The signals were modified for a specific heart rate (Table 1) by changing the 87 

diastolic time fraction (DTF, the period from minimal to maximal time derivative of LVP divided 88 

by the cardiac period(6)) taken from measured data (6). The signals amplitudes were scaled 89 

according to the values listed in Table 1.   90 

Sarcomere Stretch Ratio (SSR), required for quantification of intra-myocyte pressure (Eq. 3), has 91 

been observed to be highly coupled to ventricular volume (1). Thus, the ventricular volume 92 

waveform (11) was used for the SSR waveform, subject to 5% elongation from early to end 93 

diastole, and 16% shortening from end-diastole to end-systole. 94 

 95 

 96 
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III. In-situ Vessel Compliance-The Vessel-in-Myocardium Micromechanical Sub-Model 97 

Solution of Eq. S1-S3 requires calculation of the instantaneous (pressure-dependent) diameter in 98 

each vessel through Eq. 2. The diameter-pressure curves described by Eq. 2 were thus obtained 99 

for each vessel separately by calculating (1), through a vessel-in myocardium sub-model (Fig. 100 

2C), the lumen diameter under prescribed trans-luminal pressures ∆P. This calculation based on 101 

vessel morphometry (4, 14-16), using a detailed micro-mechanical stress analysis. A simplified 102 

(22) geometry of two concentric cylinders was considered: each vessel is surrounded by a 103 

myocardial tissue of circular cross-section. The myocardial outer diameter was taken to satisfy 104 

the measured 1:7 vessel-to-myocardium area ratio (2, 21). Both tissues are considered 105 

incompressible and hyperelastic (see below), having common interface. Calculation of the 106 

pressurized (loaded) lumen diameter requires the stress free (reference) configuration of vessel 107 

and of myocardium. Hence, the vessel-in-myocardium model equations presented below were 108 

initially solved at several loading configurations to determine the (unknown) stress free 109 

configurations.  110 

Model Equations:  Kinematics: The axi-symmetric mappings between each pair of 111 

configurations (see below) i and i+1 in cylindrical coordinates is 1( , , ) ( , , )i ir z r zθ θ +→  112 

prescribed by: 113 

 1 1 1 1 1 1,( ); ( / ) ;i i i i i i i i i i ir r r OA OA z zθ θ+ + + + + += = ⋅ = Λ ⋅               (S4) 114 

where OA denotes the cylinder opening angle, L is its length and the stretch ratio 115 

1, 1 /i i i iL L+ +Λ = . Incompressibility implies that: 116 
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The Green-Lagrange strain is ( ) / 2T=E F F - I   where I is unit matrix and F - the deformation 118 

gradient for each mapping between configurations. Assuming no twist, F is given by:  119 

 1 1, 1 1,( / / )i i i i i i i idiag r r OA OA+ + + += ∂ ∂ Λ ⋅ ΛF     (S6) 120 

Explicit expressions for the deformation gradient of each mapping are given below.  121 

Equilibrium Equations: The Cauchy stress tensor T is derived from the strain energy 122 

function W of each material (vessel wall and myocardium, see below) via the hyperelastic 123 

relationship ( / ) TP W= − + ⋅ ∂ ∂ ⋅T I F E F . The equilibrium equations in the circumferential and 124 

axial directions imply that the Cauchy stress components rT θ  and  rzT   vanish.  The radial force 125 

equilibrium equation is / ( ) / 0rr rrT r T T rθθ∂ ∂ + − = . By applying the axial and radial 126 
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equilibrium equations, the external axial force zF and the trans-luminal pressure PΔ can be 127 

expressed in terms of the components Tij of the tissue stress tensor T as follows (10): 128 
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 130 

The Reference Configuration:  The available data consists of statistics of the in-situ diameter, 131 

length and wall thickness (4, 14-16) taken under fixed intravascular pressure (vessel cast 132 

configuration). The data however, do not account for transmural morphometric heterogeneity. 133 

Under the assumption of larger subendocardial vessels (see methods), the reconstructed diameters 134 

were first modified by up to ±10% from the vessel cast values in a linear transmural manner. To 135 

obtain the reference configurations, the vessel/myocardium equilibrium equations (Eqs. S7) were 136 

solved subject to the relevant mappings and loading boundary conditions. The latter are:  137 

(i) The Cast Configuration: Kassab and co-workers (4, 14-16) diameters were measured under 138 

fixed cast pressure. The loading conditions in this configuration 139 

are v mP P casting pressureΔ + Δ = .where v and m superscripts denote the vessel and 140 

myocardium, respectively. Each vessel’s specific cast pressure was taken from a steady state 141 

coronary flow analysis (19) based also on Kassab data.   142 

(ii) The Unloaded Configuration: The transition to this configuration is prescribed by the 143 

mapping from the cast configuration. The loading conditions here are 144 

0; 0v m v m
z zF F P P+ = Δ + Δ = . Based on previous data (7) the axial stretch was taken to 145 

remain constant during this mapping.  146 

 (iii) The Un-tethered Configuration:  Unloaded coronary vessels are not stress-free. When 147 

myocardial tethering is removed, large epicardial arteries were found to shorten by 0% in human 148 

ex-vivo (9) and 30% in swine (23) (i.e., vessels’ tethering stretch ranges between 1.0 and 1.4, 149 

Table 1). The un-tethered configuration was obtained upon mapping from the tethered unloaded 150 

configuration. The loading conditions in this un-tethered state are  151 

0; 0; 0v m v m
z zF F P P= = Δ + Δ =  where it is assumed that the two cylinders maintain a 152 

common but stress-free interface. 153 

(iv) The Stress-Free (Reference) Configuration:  The tethered-free vessel and myocardium are 154 

still not stress-free, but rather loaded by internal residual stress. Their magnitudes are quantified 155 

by the measured OA of the corresponding cylinders when cut open. For coronary vessels, OA are 156 

specimen dependent. For the myocardium OA = 2.75 rad. (17).  157 
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The stress-free reference configuration is obtained by mapping between configurations A and D.  158 

The deformation gradient tensor: The deformation gradient F is determined by the mapping of 159 

coordinates between two loading configurations. Specifically, the transition from stress-free (sf 160 

subscript) to un-tethered (unt), un-tethered to unloaded (unld), and unloaded to loaded 161 

configurations, combined with tissue incompressibility, leads to: 162 

 163 
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  165 

  166 

Here the superscript v/m denotes the specific cylinder: either vessel wall (v) or myocardium (m), 167 

rin is the cylinder internal radius, and Λ is the axial stretch. The effect of dynamic axial stretch 168 

was previously (1) shown to have small effect on the predicted results and was thus not accounted 169 

for. 170 

Vessel and Myocardium Constitutive Properties: The description of the multiaxial material laws 171 

of vessel wall (23) and of the myocardium (18) are based on Fung-type pseudostrain energy 172 

functions: 173 
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 Here I1 and I4 are the first and fourth strain invariants respectively, and Eii are the components of 175 

the Green-Lagrange strain tensor. 176 

The parameters C were previously estimated for 10 vessel samples (23) and 7 myocardial samples 177 

(18). To obtain a representative vessel/myocardium pair, each of the 10 vessel parameter sets (23) 178 

was combined with each of the 7 parameter sets of the passive myocardial samples (18), and 179 

properties of each of the vessel/myocardium pairs was used as inputs to evaluate the four 180 
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parameter of Eq. 2. The pair having the best fit to the in-situ data of swine large coronary arteries 181 

(8) (Fig. 2C) was used for flow analysis.   182 

Computational scheme: To derive the stress-free configuration from the vessel cast (input) one, 183 

the internal and external radii of both cylinders (vessel wall and myocardium) at the three 184 

unknown configurations (unloaded, un-tethered and stress-free) are required. In addition to these 185 

12 unknowns, 3 axial stretches need to be determined: the stretches of both vessel wall and 186 

myocardium due to closure of the opening angle ( ,
v
unt sfΛ  and ,

m
unt sfΛ , respectively), and the 187 

myocardium stretch due to tethering, ,
m
unld untΛ . The vessels’ tethering stretch ,

v
unld untΛ  (Table 1), is 188 

a measured input. Hence the total number of unknowns is 15. 189 

The cast internal and external radii are known from the data. Hence, in each unknown 190 

configuration and for each tissue (vessel and myocardium), for each given internal radius the 191 

incompressibility condition (Eq. S5) yields the corresponding external one. Additionally, the 192 

assumption of common interface between cylinders at each of the above three configurations 193 

eliminates three more unknowns. Thus the number of unknowns is reduced from 15 to 6 (i.e., the 194 

vessel internal radii in stress-free, un-tethered and unloaded configurations; ,v in
sfr , ,v in

untr  and ,v in
unldr , 195 

respectively, and the three unknown axial stretches listed above). 196 

The six unknowns were calculated by applying the vessel-in-myocardium model 197 

equations under the six loading boundary conditions listed above (one in section i, two in ii and 198 

three in iii). The solution of this highly non-linear system was obtained by MATLAB® ga code 199 

for genetic algorithm search and MATLAB® fsolve. 200 

With the stress-free configuration determined, the vasodilated vessel diameters were 201 

evaluated (using the above MATLAB® codes) to optimally satisfy force equilibrium (Eqs. S7), 202 

subject to the vessel transvascular pressure. These values were presented as surfaces of 203 

( , )castD D D P= Δ for 3 vessel types: arteries, capillaries, and vein. Based on the experimental 204 

results of Hamza et al. (8), the above response surfaces were fitted for each vessel by a sigmoid 205 

function (Eq. 2).The maximum and mean errors associated with this fit relative to the exact 206 

solution was found to be 6% and <1%, respectively in all vessels under all simulated loading 207 

conditions.  208 

 209 

  210 

 211 

212 
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