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S| Methods

Dataset Preparation. DNA from chimpanzees housed at the Limbe
Wildlife Centre (LWC) in Limbe, Cameroon was isolated from
whole blood samples; and DNA extract yields were quantified as
previously reported (1). DNA samples were transported from
Cameroon to the United States in full compliance with Conven-
tion on International Trade in Endangered Species and Centers
for Disease Control export and import regulations. This research
was carried out with Institutional Animal Care and Use Com-
mittee approval from the University at Albany, State University of
New York.

We produced microsatellite genotype profiles of 45 chim-
panzees drawn from a subset of 310 microsatellite loci (2). This
subset of autosomal loci (n = 27) we analyzed here has been
shown previously (2) to have considerable power for: (i) dis-
tinguishing bonobos from chimpanzees, (ii) classifying individual
chimpanzees into geographically disjunct populations (western,
central, and eastern) that correspond to three of the recognized
chimpanzee subspecies, and (iii) reliably detecting hybrid in-
dividuals. Details about the loci included in this study are given
in Table S1.

PCR reactions were performed using the Qiagen Multiplex
PCR kit (Qiagen, Valencia, CA) in Eppendorf Mastercyclers
(Eppendorf, Westbury, NY), and were carried out using 1 ng of
DNA for each reaction following the manufacturer’s protocol.
Microsatellite genotyping was carried out in four multiplex PCR
reactions using the ABI G5 dye set (Applied Biosystems, Foster
City, CA). Each multiplex PCR product was analyzed on an ABI
3130 capillary array genetic analyzer (Applied Biosystems).
Fragment sizes were determined against Genescan 600 Liz size
standard (Applied Biosystems). Allele sizes were determined
using GENEMAPPER 1D version 2.7 software (Applied Bio-
systems). Heterozygous and homozygous loci were scored a
minimum of two and a maximum of four times by independent
PCRs for each individual.

Dataset Integration. These allele size data were integrated with
allele size data from individuals previously genotyped for the
same loci reported by Becquet et al. (2). We corrected for allele
size differences due to apparatus and protocol discrepancies (3)
by retyping a subset of individuals (n = 10) reported previously
(2). Table S1 lists marker and allele size adjustments made for
each locus included in this study. Previous studies in humans
have shown that such integration yields datasets suitable for
making inferences about population history (4). Of the original
130 individuals genotyped by us and those reported by Becquet
et al. (2), we removed the following individuals from subsequent
analyses: 27 captive-born chimpanzees, two chimpanzees listed
as wild-born but with untraceable/unreliable International Spe-
cies Information System (ISIS) records, and one LWC individual
that was missing alleles for >15% of the loci (despite repeated
attempts to produce allele sizes suitable for scoring). The com-
bined dataset contains genotype profiles for six bonobos and 94
wild-born chimpanzees with estimated origins from the following
locations: Cameroon (n = 45) (1), western Africa (n = 31),
central Africa (n = 12), and eastern Africa (n = 6) (2). Allele
sizes newly generated for 45 LWC chimpanzees with estimated
origins in Cameroon (1) are listed in Table S2.

Data Analysis. Cluster analysis. Population structure and individual

ancestry were examined using a Bayesian clustering approach
implemented in the STRUCTURE Version 2.3 software package
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(5). This program estimates the shared population history of
individuals based solely on their genotypes under a model of
Hardy-Weinberg equilibrium and linkage equilibrium in the
ancestral populations, thereby making no a priori assumptions
regarding population classifications. STRUCTURE estimates
individual proportions of ancestry into K clusters, where K is
specified for the program in advance across independent runs
and corresponds to the number of putative ancestral pop-
ulations. The program then assigns admixture estimates for each
individual (Q) from each inferred ancestral population cluster.
STRUCTURE runs were performed: (i) with a model that allows
individuals to have ancestry in multiple populations (“admixture
mode”); (ii) with correlated allele frequencies; and (i) blinded
to a priori population labels. Runs were performed with a burn-in
step of 500,000 Markov Chain Monte Carlo (MCMC) iterations
and 1,000,000 MCMC iterations. Fifty runs each forK = 1to K =
10 were performed for all datasets. STRUCTURE outputs were
processed with CLUMPP (6); and a G-statistic >99% was used to
assign groups of runs to a common clustering pattern. CLUMPP
output for each K value was plotted with DISTRUCT (7). We
used a combination of methods to infer a maximum number of
chimpanzee populations (Kyax) including, (i) the K value at
which the posterior probability distribution (PPD) values reached
an apex before decreasing (5), (ii) high stability of clustering
patterns between runs, (iii) the Kpax value at which Kyax + 1
no longer split the cluster distinguished by Kyax (4), (iv) corre-
spondence between maximum PPD values from STRUCTURE
runs and significant eigenvectors recovered by PCA, and (v) cal-
culating an adhoc statistic, AK (8), as estimated by the STRUC-
TURE HARVESTER software package version 0.56.4 (9).
Principal components analysis (PCA). The EIGENSOFT software
package (10) was used to perform PCA on individual genotypes
to identify significantly different populations. We developed a
script in MATLAB (The MathWorks, Natick, MA) that con-
verted the microsatellite data into a false SNP format by scoring
the presence or absence of each of n — 1 alleles (where 7 is the
number of alleles in the sample). This file was processed in
SmartPCA, which produced eigenvectors and eigenvalues. The
statistical significance of each eigenvector was tested by Tracy—
Widom statistics. Each significant eigenvector recovered by this
PCA approach separates the samples in such a way that the first
and subsequent eigenvectors distinguish, in order, the most to
least differentiated populations in the sample (10). All analyses
using EIGENSOFT were performed blinded to a priori pop-
ulation labels.

Allele frequency differentiation. Three measures of population ge-
netic differentiation were calculated usin% the ARLEQUIN 3.5
software package (11): D?, Rsr, and (8p)°. The D* (12) genetic
distance is based on a model in which genetic drift is the only
force influencing allele frequency differences across populations
and is sensitive to recent differentiation events. Rgr (13) and
(8p)? (14) are similar to D?, but both assume a stepwise mutation
model (SMM). Consequently, Rsy and (5p)* are more likely to
capture whether differences in the mutation processes are im-
portant in driving population differentiation and are also more
sensitive for detecting ancient population separations (4). These
latter models differ in that Rgr is based on the fraction of the
total variance in allele size between populations and is analogous
to Fgr (13), whereas (5p)? is based on differences in the means of
microsatellite allele sizes (14). Recent work has shown con-
vincing evidence that the loci typed for this study appear to
follow the SMM in both chimpanzees and bonobos (2, 15).
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D? calculations were co zpleted on untransformed allele size
calls. Because Rgt and (Sp) assume the SMM, allele sizes were
transformed to repeat size units before analysis in ARLEQUIN
(11). Allele sizes were transformed such that the smallest allele
for each locus was scored as n and each subsequent allele was
scored as n + 1. In infrequent cases where repeat unit sizes did
not follow the n + 1 model, and instead repeat units skipped x
repeat(s), the next allele in the data were scored as (n + x +1).
Individuals with >25% membership (n = 7) in more than one
ancestral cluster from the STRUCTURE analysis (Fig. 24) were
treated as potential hybrids and excluded from population
pairwise genetic distance calculations. Each pairwise genetic
distance calculation was determined by 100,000 replications in
ARLEQUIN. The significance of these pairwise population ge-
netic distance calculations were evaluated by a significance test
at P < 0.05.

Recent work has shown that microsatellite loci can be used to
build robust phylogenies (16). We constructed phylogenetic trees
using three measures of population genetic differentiation D?
(12), Rsr (13), and (8y)* (14) described above. Trees based on
D?* were included here, because D* gives more reliable phylo-
genetic results compared with Rgr and (8p)* (16, 17), in cases
where microsatellite alleles do not follow a stepwise mutation
process, where other evolutionary forces such as genetic drift
and/or gene flow have stronger influence on shaping diversity
than mutation, and when the number of loci is relatively small, as
is the case in this study (16).

For the D? analysis, we resampled the dataset 10,000 times to
generate multiple distance matrices. We constructed unrooted
neighbor joining phylograms for these matrices using the
PHYLIP software package, version 3.5 (18) with the Neighbor
program. Consense was used to obtain a consensus tree that was
then used by Contml to generate branch lengths from allele
frequency data using a maximum likelihood algorithm. For the
Rgsr and (Sp) analyses, single trees with branch lengths were
produced using Neighbor from population pairwise differentia-
tion values calculated with ARELQUIN. Consense calculated
bootstrap values. Trees were plotted using the GENEIOUS
software package (Version 4.8; ref. 19), and branches with at
least 70% support were labeled.

Population divergence times. Calculating population divergence
times is challenging using microsatellites, especially when the time
to most recent common ancestor (7yrca) might be quite ancient
(16). However, the microsatellite loci included in this study have
been shown to be accurate molecular clocks for Pan compared
with autosomal resequencing data (15) We calculated pop-
ulation divergence times based on (8p)* (14) assuming a muta-
tion rate () of 1.6 x 107, the median p for these loci reported
by Wegemann and Excofﬁer (20). We further assumed a 20-y
generation time (g), which is consistent with studies from the
wild (21) and has been used in recent studies (22, 23). Population
splitting times were calculated using the method described by
Goldstein et al. (14): (5p) x g/2p.

Dataset validation. We evaluated the reliability of the analyses for
the dataset reported here using three methods. First, our analyses
were based on a dataset containing only 9% of the loci reported by
Becquet et al. (2), and unlike that study, this dataset included
only wild-born chimpanzees. We examined how well this reduced
dataset captured the genetic structure reported by Becquet et al.
(2), including bonobos and chimpanzees from Upper Guinea
(western), central Africa, and eastern Africa, but excluding those
from Cameroon. Second, our analyses are also based on unequal
sample sizes for chimpanzees from different regions of Africa. In
particular, the samples size of chimpanzees reported to originate
from eastern Africa (n = 6) was much smaller than for the other
three regions: Upper Guinea (n = 31), Cameroon (n = 45), and
central Africa (n = 12). Unequal population sample sizes can
greatly bias estimates of genetic differentiation, as well as the
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numbers of distinct and private alleles found per locus in dif-
ferent populations (24, 25). We used two rarefaction procedures
to explore the possibility that our results were the result of un-
equal sample sizes instead of real population structure. First, we
constrained sample sizes to be equal in all populations identified
in the full dataset by creating randomized data subsets (n = 10)
that included six each of chimpanzees from Upper Guinea, the
Gulf of Guinea region, southern Cameroon, central Africa,
eastern Africa, and bonobos. We carried out cluster analyses
including, generating STRUCTURE (5) and PCA plots (10),
along with reevaluating Kyax for each randomized dataset. Fi-
nally, we applied a rarefaction procedure developed by Kali-
nowski (25) for counting alleles private to combinations of
populations corrected for unequal sample sizes between pop-
ulations as implemented in the ADZE software package (26).

S| Results and Discussion

The PCA (Fig. S3) for the 27-locus genotype profiles including
only wild-born Upper Guinea (western), central, and eastern
chimpanzees recovered three significant principal components
(PCs). These axes recapitulate the major population clusters
reported previously by Becquet et al. (2). PC 1 separated bo-
nobos from chimpanzees, extracting 36.7% of the observed
variation. PC 2 separated Upper Guinea chimpanzees from
chimpanzees occupying equatorial Africa, extracting for 44.1%
of the genetic variation. PC 3 separated the central and eastern
populations, accounting for 19.2% of the variation. We did not
detect the fourth axis of variation reported by Becquet et al. (2),
possibly due to the lack of captive-born individuals reported as
“hybrids” by these authors. Alternatively, the reduced number of
loci may lack the power to resolve subtle population differences
at higher values of K. Table S3 compares Rst and Fsr values
between the full dataset including 310 loci as reported by Bec-
quet et al. (2) compared with these including only bonobos along
with the Upper Guinea (western), central, and eastern pop-
ulations for the 27-locus dataset. Allele frequency differentiation
values for the 27-locus dataset (this study) versus the 310-locus
dataset reported by Becquet et al. (2) were highly correlated
(Rst 7 = 0.96, P < 0.5; Fsp r* = 0.96, P < 0.5). Based on these
findings, we concluded that the suite of microsatellite loci in-
cluded in this study adequately captured the population structure
reported by Becquet et al. (2) for Upper Guinea (western),
central, and eastern chimpanzees. Consequently, the 27-locus
dataset should yield a reliable picture regarding how chimpan-
zees from Cameroon contribute to the population structure of
this species.

The population structure inferred for the ten randomized
datasets of equal population size was highly consistent across
runs. Each dataset returned identical Ky.x values as well as the
same number of significant PCs by PCA. Fig. S4 A-C shows
results for the inferred population structure for one of these
randomized datasets composed of equal sized populations. The
cluster analysis in STRUCTURE (Fig. S4B) revealed that Kyjax
was 5 using both the PPD and AK criteria (Fig. S4C), instead of
Kymax = 4 or Kpax = 6 for the full dataset including all 100
individuals. Also in contrast to the full dataset, chimpanzees
originating in eastern Africa were distinguished from the others
at lower values of K (K = 4) by STRUCTURE analysis than for
the full dataset, and those from southern Cameroon clustered
with chimpanzees from other parts of central Africa at Kyjax =
5. The PCA (Fig. S44) captured four significant PCs that dis-
tinguished five significantly different populations of chimpan-
zees, whereas the PCA for the full dataset recovered six
significantly different populations. The difference between the
datasets containing equal population sizes compared with the
full dataset was that the equal population size datasets did not
recover a statistically significant PC that distinguished chim-
panzees originating from southern Cameroon from chimpanzees
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originating from other areas of central Africa, as was found by
PCA of the full dataset. We concluded based on these results that
oversampling of chimpanzees from Cameroon did not greatly bias
the results we obtained from the full dataset. However, unequal
population sample sizes appear to have influenced discerning
subtle population structure across equatorial Africa. In particular,
the full dataset may be an underestimate of the allele frequency
differentiation that separates central and east African chimpan-
zees, or alternatively, may be an overestimate of the subtle dis-
tinction that separates chimpanzees originating from southern
Cameroon from those originating elsewhere in central Africa.
Fig. S5 A and B shows allele richness by region and private
alleles found in each population corrected for unequal pop-
ulation sample size. Allele richness did not vary considerably
between regions, whereas private alleles occurred more fre-
quently among chimpanzees originating in central and eastern
Africa compared with Upper Guinea, the Gulf of Guinea region,
or southern Cameroon. Fig. S6 shows shared private alleles be-
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Table S1. Information for markers used in this study

Repeat No of. Allele size Calibration
Name* Chromosome Locus number alleles’ range bp shift*
GATA91HO6M 12 D1251301 4 22 87 146 +8
ATA27A06P 12 D1251042 3 18 104 167 +12
GATA29A01 6 D651959 4 12 134 182 +5
GATA11A06 18 D185542 4 35 156 210 +4
GATA104 7 4 32 169 227 -
GATA176C01 2 D2S2972 4 37 198 279 +5
GGAA4BO9N 3 D352403 4 18 204 269 -
AGAT120 22 SNP343411 4 22 251 293 +1
ATTTO030 6 4 12 104 142 +6
GGAA3A07M 1 D1S1612 4 27 123 189 +3
TCTA017M 9 4 27 146 209 +4
GATA25A04 7 D1751299 4 28 172 226 +6
GATA8C04 17 D175974 4 12 173 217 +1
GATA164B08P 3 D354545 4 41 193 258 +13
GATA28F03 4 D453248 4 14 223 271 -
GATA129D11N 21 D2152052 4 11 109 153 +9
GATA43A04 1 D1S1653 4 36 107 229 +4
GATA116BO1IN 2 D2S2952 4 23 142 207 +3
UT7544 19 D19S559 4 20 136 177 -1
GATA129H04 1 D1S3721 4 39 159 260 +3
GATAG61E03 6 D6S1051 4 15 207 268 +7
GATA71HO05 16 D165769 4 26 242 300 +6
GGAA21G11L 14 D14S617 4 18 111 201 +6
GATA14E09 8 D852324 4 16 180 220 +6
GATA50G06 15 D155643 4 24 187 287 +3
GATA43C11 7 D751804 4 22 196 298 -
GATA7FO05 3 D3S3039 4 17 246 312 -

*27 microsatellite loci located on the autosomes typed for this study from Becquet et al. (1).
TAllele number includes all raw allele calls from Becquet et al. (1) and this study.
*The number of base pairs added to alleles to match the allele sizes reported in Becquet et al. (1).

1. Becquet C, Patterson N, Stone AC, Przeworski M, Reich D (2007) Genetic structure of chimpanzee populations. PLoS Genet 3:e66.
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Table S3. Comparison of genetic differentiation among

populations

Location* Western Eastern Central Bonobo
Western 0.44 (0.26) 0.42 (0.19) 0.82 (0.34)
Eastern 0.31 (0.32) 0.025 (0.07) 0.70 (0.26)
Central 0.31 (0.32) 0.05 (0.09) 0.70 (0.21)
Bonobo 0.68 (0.68) 0.57 (0.54) 0.51 (0.49)

*Microsatellite genotypes for western, central, and eastern chimpanzees
were reported by Becquet et al. (1). Pairwise Rst (versus Fst) is shown. Num-
bers in bold above the diagonal were calculated from the subset of 27
autosomal microsatellite loci from Becquet et al. (1). Numbers below the
diagonal appear in Becquet et al. (1).

1. Becquet C, Patterson N, Stone AC, Przeworski M, Reich D (2007) Genetic structure of chimpanzee populations. PLoS Genet 3:e66.
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