Supporting Information

de Zoete et al. 10.1073/pnas.1018135108

SIGNAL	MRILIGSLYFYFISFLFSKVNG	
LRR-NT	FLTQRTSPVSSFPFYNYSYLNLSSVSQAQAPKT	
LRR1 LRR2 LRR3	ARALNFSYNATEKITKRD-FEG-FHV	24
LRR4 LRR5 LRR6 LRR7 LRR8 LRR9 LRR10 LRR11 LRR12 LRR13 LRR14 LRR15 LRR16	NGLLDLSRTKLSNEELTAKLDADLCQAQLGT VLEFNISHSDLEMDLLSL-FILFLPMKD- IQSVDASYNRITINNIDVEAICHFPFSN- FSFLNISNNPINSLETVC-LPAS- ITVIDLSFTNISTIPANFAKKLSK LERMYVQGNQLIYTVRPENPSATPRPPPGTVQ ISAISLVRNQAGTPIES-LPES	31 27 28 22 24 32 21 24 20 23 22 22 22
LRR17 LRR18 LRR19 LRR-CT	LTNLDSSHN-LISELPDH-LGQSLUM	22
TM	GIQMAITACMAILVVLVLTGLCW	
TIR	RFDGLWYVRMGWYWCMAKRRQYKKRPENKPFDAFISYSEHDADWTKEHLL KKLETDGFKICYHERDFKPGHPVLGNIFYCIENSHKVLFVLSPSFVNSCW CQYELYFAEHRVLDENQDSLIMVVLEDLPPDSVPQKFSKLRKLLKRKTYL KWSPEEHKQKIFWHQLAAVLKTTNEPLVRAENGPNEDVIEME	

Fig. S1. Schematic overview of TLR15. Depicted are the predicted signal sequence (SIGNAL), the N-terminal LRR (LRR-NT), 19 LRRs (LRR1-19), the C-terminal LRR (LRR-CT), the transmembrane domain (TM), and the TIR domain (TIR). The proline-rich loop (aa 352–363) is boxed.

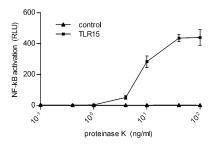


Fig. 52. Dose-dependent activation of TLR15 by proteinase K. NF- κ B activation of TLR15- or control-transfected HeLa 57A cells were stimulated for 5 h with increasing amounts of proteinase K. Data are presented as relative luciferase units (RLU) and are the mean \pm SEM of three independent experiments.

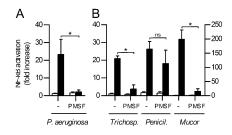


Fig. S3. Inhibition of P. aeruginosa and fungi-induced TLR15 activation by PMSF. TLR15-induced NF- κ B activation in HeLa 57A cells by culture supernatant of (A) P. aeruginosa or (B) Trichosporon spp. (left y axis) and Mucor spp. (right y axis) is inhibited by specific inhibition of proteases by PMSF. TLR15-activation by Aspergillus spp. (B, left Y axis) is not affected by PMSF. Proteases were inhibited by PMSF treatment (1 mM, 15 min) before stimulation (5 h). Data are presented as mean \pm SEM of stimulated versus unstimulated cells from three independent experiments (P < 0.05; ns, not significant).

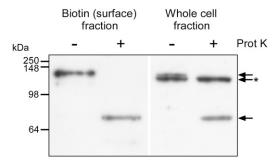


Fig. S4. Only surface-localized TLR15 is subject to proteinase K cleavage. Surface membrane proteins of COS-7 cells expressing C-terminal Flag-tagged TLR15 were labeled with sulfo-NHS-LC-biotin and then treated with 0 or 100 ng mL $^{-1}$ proteinase K for 45 min. The biotin (surface) fraction was separated from the whole-cell fraction by streptavidin-coupled magnetic beads. Surface-localized full-length and cleaved TLR15 (arrows) and intracellular TLR15 (arrow with asterisk) were detected by immunoblot analysis by using M2-α-Flag antibodies.

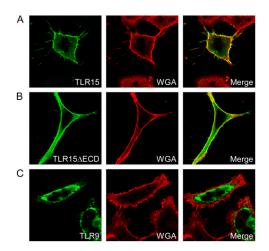


Fig. S5. TLR15ΔECD is localized on the cell surface. (A–C) Confocal microscopy of HeLa 57A cells transfected with flag-tagged TLR15, TLR15ΔECD, or TLR9. Both TLR15 (A, green) and TLR15ΔECD (B, green) colocalized with the cell surface marker WGA (red), in contrast to TLR9 (C, green).