Supporting Information

Synthesis and Cross-coupling of Sulfonamidomethyltrifluoroborates

Nicolas Fleury-Brégeot, Marie-Aude Hiebel and Gary A. Molander* Roy and Diana Vagelos Laboratories, Department of Chemistry University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 gmolandr@sas.upenn.edu

Contents:

Optimizati	on tables						S2-S3
ORTEP viev	w of Potassiu	ım Sul ^ı	fonam	idomethyltri	fluoro	oborate 2a	S3
General co	onsiderations						S4
General	procedure	for	the	synthesis	of	Potassium	Sulfonamidomethyl-
trifluorobo	orates						S4
General procedure for the cross-coupling of sulfonamidomethyltrifluoroborate and aryl							
or heteroa	ryl chlorides.		•••••				S12
NMR Spec	tra						S23-S142

• Optimization:

	O S N BF ₃ K +	CI	[Pd] 5 mol% L 7.5 mol% ───► Cs ₂ CO ₃ Solvent/H ₂ O	O S N H	OMe	
	1.1 equiv	1 equiv	80- 100 °C, overnight			
	✓ Solvent:					
entry	solvent	Т°С	[Pd]	L	Conversion	
1	CPME/H ₂ O 10:1	85°C	Pd(OAc) ₂	XPhos	9%	
2	THF/H ₂ O 3:1	80°C	Pd(OAc) ₂	XPhos	43%	
3	<i>t</i> -BuOH/ H ₂ O 1:1	100°C	Pd(OAc)₂	XPhos	63%	
	✓ Ligands:					
e	entry	ligand		conv	version	
	1	XPhos		6	3%	
	2	DavePhos		2	5%	
	3	SPhos		5	0%	
	4	RuPhos	61%			
	5	PdCl₂dppf		(0%	
	✓ Screening of	f Bases:				
	O S N BF3 1.1 equiv	K + CI-	Pd(OAc) ₂ : L 7.5 m Base 3 e <i>t</i> -BuOH 100 °C, ov	5 mol% hol% equiv /H ₂ O vernight	O O O M O Me	
entr	y hase		conversion (vie	<u>əld)</u>	ligand	
1	<u>y Suse</u> Cs ₂ CO ₂		63%		XPhos	
2	K ₂ CO ₂		63%		XPhos	
3	K₃PO₄		73%	XPhos		
4	NaOt-Bu		100% (70%)		XPhos	
	✓ Screening of	f Pd sources:		\checkmark		
	O N BF ₃ K +	CI	[Pd] 5 mol% XPhos 7.5 mol% NaOt-Bu 3 equiv t-BuOH/H ₂ O	Ĺ ſ ſ	OMe	
	1.1 eq.	1 eq.	100°C, overnight			
ent	ry Pd	source		conversion	(yield)	

i a source	
Pd(COD) ₂ Cl ₂	100% (63%)
Pd(nbn) ₂ Cl ₂	44%
Pd(bzn) ₂ Cl ₂	100% (59%)
	Pd(COD) ₂ Cl ₂ Pd(nbn) ₂ Cl ₂ Pd(bzn) ₂ Cl ₂

4	Pd ₂ dba ₃	78% (64%)*
5	Pd(OAc) ₂	100% (77%)
6	Pd(MeCN) ₂ Cl ₂	100% (79%)*
	* 1.2 eq. of trifluoroborate used	

• ORTEP view of potassium sulfonamidomethyltrifluoroborate 2a:

TheORTEP drawing shows two potassium cations that actually count for two "half" potassium atoms as they lie on a crystallographic 2-fold axis.

General Considerations

All commercially obtained reagents were used as received. Both solvents and deionized water were degassed with N₂ each time prior to use. Standard benchtop techniques were employed for handling air-sensitive reagents. Melting points (°C) are uncorrected. NMR spectra were recorded on a 500 or 400 MHz spectrometer. ¹⁹F NMR chemical shifts were referenced to external CFCl₃ (0.0 ppm). ¹¹B NMR spectra were obtained on a spectrometer equipped with the appropriate decoupling accessories. All ¹¹B NMR chemical shifts were referenced to external BF₃·OEt₂ (0.0 ppm) with a negative sign indicating an upfield shift. Data are presented as follows: chemical shift (ppm), multiplicity (*s* = singlet, *d* = doublet, *t* = triplet, *m* = multiplet, *br* = broad), coupling constant *J* (Hz) and integration. Analytical thin-layer chromatography (TLC) was performed on TLC silica gel plates (0.25 mm) precoated with a fluorescent indicator. Standard flash chromatography procedures were followed using 32–63 µm silica gel or basic alumina. Visualization was effected with ultraviolet light.

General procedure for the synthesis of Potassium Sulfonamidomethyltrifluoroborate:

A fresh solution of KHMDS (5 mmol, 1 equiv) in distilled THF (10 mL) at -78 °C under nitrogen was added dropwise to a solution of 2-(chloromethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5 mmol, 1 equiv) in distilled THF (10 mL) at -78 °C over 15 minutes. Once the addition was done, the resulting solution was allowed to warm to rt for 2 h, then cooled to 0 °C. Distilled MeOH (0.205 mL, 1 equiv) was then added and the mixture was stirred for 1 h. The sulfonyl chloride (6 mmol, 1.2 equiv) was then added and the solution is allowed to warm to rt for 2 h. The solvents were then removed under reduced pressure. The resulting crude sulfonamidomethylboronic ester was then taken up in MeOH (10 mL) and the flask was cooled to 0 °C followed by addition of 4.5 M aqueous KHF_2 (4 equiv). After stirring 1 h at room temperature, the solvents were removed under reduced pressure and the desired trifluoroborate was purified by washing the obtained solid successively with distilled water and Et_2O .

 $\int O H$ Potassium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2a**: Obtained as a white solid (1.2 g, 75%).

mp > 240 °C.

```
<sup>1</sup>H NMR (acetone-d<sub>6</sub>, 400 MHz):
```

 δ = 6.99 (s, 2H, CH Ar), 4.49 (br s, 1H, NH), 2.61 (s, 6H, CH₃x2), 2.28 (s, 3H, CH₃), 1.74 (br s, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

 δ =141.1, 138.8, 133.8, 131.7, 22.7, 20.7.

¹¹B NMR (DMSO-d₆, 128.38 MHz)

```
\delta=2.40 (br s).
```

```
<sup>19</sup>F NMR (DMSO-d<sub>6</sub>, 470.84 MHz):
```

```
δ=-141.9.
```

IR: v = 3360, 1716, 1652, 1456, 1316, 1162, 1010, 658 cm⁻¹. HRMS (ESI) *m/z* calcd. For C₁₀H₁₄BNO₂F₃S (M-K) 280.0790, found 280.0787.

 0° H° BF₃Cs Cesium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2b**: Obtained as a white solid (350 mg, 48%). mp > 240 °C.

¹H NMR (acetone-d₆, 400 MHz):

 δ = 6.99 (*s*, 2H, CH Ar), 4.49 (*br s*, 1H, NH), 2.61 (*s*, 6H, CH₃x2), 2.28 (*s*, 3H, CH₃), 1.74 (*br s*, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

 δ =141.1, 138.8, 133.8, 131.7, 22.7, 20.7.

¹¹B NMR (acetone-d₆, 128.38 MHz)

 δ =3.54 (q, J = 55 Hz).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ =-141.9.

IR: v = 3366, 1455, 1307, 1284, 1149, 1029, 995, 660 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₀H₁₄BNO₂F₃S (M-K) 280.0790, found 280.0787.

 \acute{O} \tilde{H} \tilde{P} BF₃K Potassium 4-Methylphenylsulfonamidomethyltrifluoroborate **2c**: Obtained as a white solid (917 mg, 63%).

mp > 240 °C.

¹H NMR (acetone-d₆, 500 MHz):

 δ = 7.69 (*d*, *J* = 8.0 Hz, 2H, CH, Ar), 7.32 (*d*, *J* = 8.0 Hz, 2H, CH, Ar), 4.46 (*br s*, 1H, NH), 2.39 (*s*, 3H, Me), 1.81 (*br s*, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

δ = 142.0, 137.4, 129.4, 127.4, 21.3.

¹¹B NMR (acetone, 128.38 MHz)

 δ = 3.39 (q, J = 52 Hz).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ = -141.0.

IR: v = 3300, 1652, 1410, 1164, 896, 696 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₈H₁₀BNO₂F₃S (M-K) 252.0477, found 252.0483.

BF₃K Potassium

((2,4,6

Triisopropylphenylsulfonamido)methyl)trifluoroborate 2d:

Obtained as a white solid (162 mg, 40%).

mp > 240 °C.

¹H NMR (DMSO-d₆, 500 MHz):

 δ = 7.18 (s, 2H), 4.59 (br s, 1H, NH), 4.11 (sept., J = 7.0 Hz, 2H, CH(NMe)₂), 2.90 (sept, J = 7.0 Hz, 1H, CH(NMe)₂), 1.61 (t, J = 5.0 Hz, 2H, CH₂), 1.20 (d, J = 7.0 Hz, 6H, Me), 1.16 (d, J = 7.0 Hz, 12H, Me).

¹³C NMR (DMSO, 125.8 MHz):

δ=151.3, 149.7, 132.2, 123.1, 33.3, 28.9, 23.4.

¹¹B NMR (DMSO-d₆, 128.38 MHz)

 δ = 3.0 (*br* s).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ =-141.8.

IR: v = 3335, 2963, 2872, 1600, 1458, 1426, 1298, 1168, 1021, 985, 881, 663 cm⁻¹. HRMS (ESI) *m*/*z* calcd. For C₁₆H₂₆BNO₂F₃S (M-K) 364.1729, found 364.1732.

MeO

`BF₃K

Potassium 4-Methoxyphenylsulfonamidomethyltrifluoroborate **2e**: Obtained as a white solid (996 mg, 65%). mp > 240 °C. ¹H NMR (acetone-d₆, 400 MHz):

 δ = 7.68 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5Hz, 2H), 5.42 (t, J = 5.0 Hz, 1H, NH), 3.83 (s, 3H, Me), $1.56(t, J = 5.0 \text{ Hz}, 2\text{H}, C\text{H}_2).$

¹³C NMR (DMSO-d₆, 125.8 MHz):

δ = 162.1, 132.0, 129.4, 114.1, 55.9.

¹¹B NMR (DMSO-d₆, 128.38 MHz)

 δ = 2.75 (br s).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ = -140.9.

IR: v = 3299, 1602, 1580, 1599, 1303, 1162, 1014, 832 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₈H₁₀BNO₃F₃S (M-K) 268.0427, found 268.0463.

S N BF₃K Potassium Phenylsulfonamidomethyltrifluoroborate **2f**: Obtained as a white solid (204 mg, 29%). mp > 240 °C. ¹H NMR (acetone-d₆, 400 MHz): $\delta = 7.76$ (d, J = 7.2 Hz, 2H), 7.56 (m, 3H), 5.67 (br s, 1H, NH), 1.58 (t, J = 4.8 Hz, 2H, CH₂). ¹³C NMR (DMSO-d₆, 125.8 MHz): $\delta = 140.3$, 132.0, 129.0, 127.3. ¹¹B NMR (DMSO-d₆, 128.38 MHz) $\delta = 3.33$ (q, J = 52 Hz). ¹⁹F NMR (DMSO-d₆, 470.84 MHz): $\delta = -141.0$. IR: v = 3301, 1454, 1317, 1164, 1014, 986, 894, 726 cm⁻¹.

HRMS (ESI) *m/z* calcd. For C₇H₈BNO₂F₃S (M-K) 238.0321, found 238.0321.

O S N BF3

 $O' H O' BF_3K$ Potassium 2-Naphthylsulfonamidomethyltrifluoroborate **2g**:

Obtained as a white solid (1.1 g, 67%).

mp > 240 °C.

¹H NMR (acetone-d₆, 400 MHz):

 δ = 8.42 (s, 1H), 8.05 (m, 3H), 7.88 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 4.0 Hz, 2H), 4.64 (br s, 1H, NH), 1.88 (br s, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

 δ = 137.4, 134.3, 132.0, 129.3, 129.1, 128.6, 128.1, 127.9, 127.6, 123.5.

¹¹B NMR (acetone-d₆, 128.38 MHz)

 δ = 3.36 (q, J = 44.5 Hz).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ =-141.0.

IR: v = 3316, 1652, 1444, 1319, 1074, 674 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₁H₁₀BNO₂F₃S (M-K) 288.0477, found 288.0468.

`BF₃K

Potassium 1-Naphthylsulfonamidomethyltrifluoroborate **2h**:

Obtained as a white solid (338 mg, 41%). mp > 240 °C. ¹H NMR (acetone-d₆, 500 MHz): δ = 8.69 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.05 (m, 2H), 7.63 (m, 3H), 5.89 (br s, 1H, NH), $1.58 (t, J = 5.0 \text{ Hz}, 2\text{H}, \text{CH}_2).$ ¹³C NMR (acetone-d₆, 125.8 MHz): δ = 135.5, 134.2, 133.3, 129.1, 129.0, 127.8, 126.9, 125.6, 124.6. ¹¹B NMR (acetone-d₆, 128.38 MHz) δ = 2.83 (br s). ¹⁹F NMR (DMSO-d₆, 470.84 MHz): δ = -141.0. IR: v = 3363, 1652, 1558, 1418, 1313, 1163, 1049, 972, 768 cm⁻¹. HRMS (ESI) *m*/*z* calcd. For C₁₁H₁₀BNO₂F₃S (M-K) 288.0477, found 288.0487. N BF₃K H Potassium Thiophene-2-sulfonamidomethyltrifluoroborate **2i**: Obtained as a white solid (532 mg, 38%).

mp > 240 °C.

¹H NMR (acetone- d_6 , 500 MHz):

 δ = 7.75 (*d*, *J* = 4.8 Hz, 1H), 7.54 (*d*, *J* = 2.4 Hz, 1H), 7.15 (*t*, *J* = 4.8 Hz, 1H), 4.71 (*br s*, 1H, NH), 1.96 (br s, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

 δ = 130.9, 130.5, 126.9.

¹¹B NMR (acetone, 128.38 MHz)

 δ = 2.58 (q, J = 53.0 Hz).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ = -145.8.

IR: v = 3295, 1647, 1560, 1313, 1163, 1018, 654 cm⁻¹

HRMS (ESI) *m*/*z* calcd. For C₅H₆BNO₂F₃S₂ (M-K) 243.9885, found 243.9888.

BF₃K

Potassium 2-Nitrophenylsulfonamidomethyltrifluoroborate 2j: Obtained as a white solid (174 mg, 54%). mp > 240 °C. ¹H NMR (DMSO-d₆, 500 MHz): δ = 7.96 (*m*, 2H), 7.83 (*br s*, 2H), 5.69 (*br s*, 1H, NH), 1.69 (*s*, 2H, CH₂). ¹³C NMR (DMSO-d₆, 125.8 MHz): δ = 148.6, 133.9, 132.6, 131.9, 130.7, 124.9. ¹¹B NMR (DMSO-d₆, 128.38 MHz)

 δ = 2.61 (*br* s).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ = -141.8.

IR: v = 3359, 1541, 1351, 1327, 1164, 1013, 800, 732 cm⁻¹

HRMS (ESI) *m/z* calcd. For C₇H₇BN₂O₄F₃S (M-K) 283.0172, found 283.0173.

 O_2N

O BF₃K Potassium 4-Nitrophenylsulfonamidomethyltrifluoroborate **2k**: Obtained as a white solid (566 mg, 70%).

mp > 240 °C.

¹H NMR (DMSO-d₆, 500 MHz):

 δ = 8.36 (*d*, *J* = 7.0 Hz, 2H), 8.0 (*d*, *J* = 7.0 Hz, 2H), 6.33 (*br s*, 1H, NH), 1.60 (*br s*, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

 δ = 149.5, 146.2, 128.8, 124.4.

¹¹B NMR (DMSO-d₆, 128.38 MHz)

 δ = 2.95 (br s).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ = -140.9.

IR: v = 3361, 2360, 1455, 1316, 1161, 1013, 895, 658cm⁻¹

HRMS (ESI) *m*/*z* calcd. For C₇H₇BN₂O₄F₃S (M-K) 283.0172, found 283.0176.

Br

BF₃K Potassium 2-Bromophenylsulfonamidomethyltrifluoroborate **2I**:

Obtained as a white solid (941 mg, 53%).

mp > 240 °C.

¹H NMR (DMSO-d₆, 500 MHz):

 δ = 7.95 (*d*, *J* = 7.5 Hz, 1H), 7.82 (*d*, *J* = 8.5 Hz, 1H), 7.53 (*m*, 2H), 5.26 (*br s*, 1H, NH), 1.56 (*t*, *J* = 4.5 Hz, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

 δ = 138.5, 135.34, 133.9, 131.6, 128.2, 119.5.

```
<sup>11</sup>B NMR (DMSO-d<sub>6</sub>, 128.38 MHz)
```

 δ = 3.00 (br s).

```
<sup>19</sup>F NMR (DMSO-d<sub>6</sub>, 470.84 MHz):
```

 δ = -142.1.

IR: v = 3332, 1684, 1627, 1449, 1310, 1164, 1006, 765 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₇H₇BNO₂F₃S Br (M-K) 315.9426, found 315.9434.

`BF₃K Potassium 4-Bromophenylsulfonamidomethyltrifluoroborate 2m: Obtained as a white solid (712 mg, 40%). mp > 240 °C. ¹H NMR (acetone- d_6 , 500 MHz): δ = 7.75 (d, J = 8.5 Hz, 2H), 7.68 (d, J = 8.5 Hz, 2H), 5.94 (t, J = 5.0 Hz, 1H, NH), 1.56 (t, J = 5.5 Hz, 2H, CH₂). ¹³C NMR (DMSO-d₆, 125.8 MHz): δ = 139.7, 132.0, 129.4, 125.7. ¹¹B NMR (DMSO-d₆, 128.38 MHz) δ = 3.33 (br s). ¹⁹F NMR (acetone-d₆, 470.84 MHz): δ = -140.8. IR: v = 3266, 1573, 1416, 1312, 1165, 1028, 1006, 784 cm⁻¹ HRMS (ESI) *m*/*z* calcd. For C₇H₇BNO₂F₃SBr (M-K) 315.9426, found 315.9432. [•]BF₃K Potassium 2,6-Dichlorophenylsulfonamidomethyltrifluoroborate **2n**: Obtained as a white solid (1.07g, 62%). mp > 240 °C. ¹H NMR (acetone-d₆, 500 MHz): δ = 7.63 (*d*, *J* = 7.5 Hz, 2H), 7.53 (*t*, *J* = 7.5Hz, 1H), 5.40 (*br s*, 1H, NH), 1.61 (*t*, *J* = 5.0 Hz, 2H, CH₂). ¹³C NMR (DMSO-d₆, 125.8 MHz): δ = 134.5, 134.3, 133.5, 131.9. ¹¹B NMR (acetone-d₆, 128.38 MHz) δ = 3.62 (*m*).

¹⁹F NMR (DMSO-d₆, 470.84 MHz):

 δ = -142.3.

IR: v = 3361, 1558, 1424, 1324, 1181, 1025, 780 cm⁻¹.

HRMS (ESI) m/z calcd. For C₇H₆BNO₂F₃S Cl₂ (M-K) 305.9541, found 305.9545.

[•]BF₃K Potassium 4-Acetamidophenylsulfonamidomethyltrifluoroborate

2o:

Obtained as a white solid (592 mg, 30%).

```
mp > 240 °C.

<sup>1</sup>H NMR (acetone-d<sub>6</sub>, 400 MHz):

\delta = 9.41 (br s, 1H, NH), 7.79 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.5 Hz, 2H), 4.46 (br s, 1H, NH), 2.12 (s,

3H, Me), 1.84 (br s, 2H, CH<sub>2</sub>).

<sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 125.8 MHz):

\delta = 169.2, 142.5, 134.0, 128.4, 118.6, 24.5.

<sup>11</sup>B NMR (acetone-d<sub>6</sub>, 128.38 MHz)

\delta = 2.64 (br s).

<sup>19</sup>F NMR (DMSO-d<sub>6</sub>, 470.84 MHz):

\delta = -141.0.

IR: v = 3281, 2359, 1668, 1519, 1315, 1150, 1024 cm<sup>-1</sup>.

HRMS (ESI) m/z calcd. For C<sub>9</sub>H<sub>11</sub>BN<sub>2</sub>O<sub>3</sub>F<sub>3</sub>S (M-K) 295.0536, found 295.0540.
```

BF₃K Potassium 4-Fluorophenylsulfonamidomethyltrifluoroborate **2p**:

Obtained as a white solid (334 mg, 45%).

mp > 240 °C.

¹H NMR (acetone-d₆, 400 MHz):

 δ = 7.82 (*dd*, *J* = 8.8, 5.6 Hz, 2H), 7.38 (*t*, *J* = 8.8Hz, 2H), 5.80 (*br s*, 1H, NH), 1.57 (*t*, *J* = 5.2 Hz, 2H, CH₂).

¹³C NMR (DMSO-d₆, 125.8 MHz):

 δ = 164.1 (d, J = 250.0 Hz), 136.7 (d, J = 3.9 Hz), 130.2 (d, J = 9.3 Hz), 116.0 (d, J = 22.3 Hz).

¹¹B NMR (DMSO-d₆, 128.38 MHz)

 δ = 2.51 (br s).

¹⁹F NMR (acetone-d₆, 470.84 MHz):

 δ = -110.2, -146.0.

IR: v = 3275, 1593, 1493, 1414, 1311, 1148, 1023, 999, 832 cm⁻¹.

HRMS (ESI) m/z calcd. For C₇H₇BNO₂F₄S (M-K) 256.0227, found 256.0222.

General procedure for the cross-coupling of sulfonamidomethyltrifluoroborate and aryl or heteroaryl chlorides:

In a microwave vial equipped with a stirring bar was successively introduced $Pd(MeCN)_2Cl_2$ (1.3 mg, 2 mol %), phosphine ligand (4 mol %), base (3 equiv), and the sulfonamidomethyltrifluoroborate (1 to 1.2 equiv). The vial was then capped and put under inert atmosphere (3x vacuum / N_2 cycles). The electrophile was then introduced using a microsyringe (0.25 mmol, 1 equiv) followed by 0.5 mL of degassed *t*-BuOH and 0.5 mL of degassed distilled water. The resulting mixture was then placed in an oil bath preheated at 100 °C and stirred overnight (14 to 16 h). After cooling to room temperature, the vial was uncapped and the reaction mixture was diluted with ethyl acetate (5 mL) and water (5 mL). The organic layer was passed through a celite plug and dried over MgSO₄. After solvent removal the obtained crude product was purified by flash column chromatography on silica gel or basic alumina using a mixture of hexanes/ethyl acetate as the eluent.

Method A: phosphine ligand = XPhos, base = NaOt-Bu. Method B: phosphine ligand = RuPhos, base = Cs_2CO_3 .

N-Benzyl-2,4,6-trimethylbenzenesulfonamide **3a**:

Obtained as a white solid [method A, 72% (52 mg), method B, 95% (69 mg)].

mp = 96-98 °C.

¹H NMR (acetone-d₆, 500 MHz):

 δ = 7.20 (*m*, 5H), 7.00 (*s*, 2H), 6.77 (*br s*, 1H, NH), 4.09 (*d*, *J* = 6.5 Hz, 2H, CH₂), 2.62 (*s*, 6H, Me), 2.28 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

δ = 142.2, 139.1, 136.3, 133.4, 131.9, 128.6, 127.9, 127.8, 46.7, 22.9, 20.8.

IR: v = 3264, 1603, 1403, 1303, 1147, 1048, 878, 744, 651 cm⁻¹

HRMS (ESI) m/z calcd. For C₁₆H₂₀NO₂S (M+H) 290.1215, found 290.1229.

 \sim OMe *N*-(4-Methoxybenzyl)-2,4,6-trimethylbenzenesulfonamide **3b**: Obtained as a white solid [method A, 87% (70 mg), method B, 78% (62 mg)].

mp = 98-100 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.08 (*d*, *J* = 8.5 Hz, 2H), 6.97 (*s*, 2H), 6.79 (*d*, *J*= 8.5 Hz, 2H), 4,66 (*br s*, 1H, NH), 4.00 (*d*, *J* = 5.5 Hz, 2H, CH₂), 3.78 (*s*, 3H, OMe), 2.64 (*s*, 6H, Me), 2.32 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 159.3, 142.2, 139.2, 133.6, 132.0, 129.3, 128.4, 114.1, 55.3, 46.3, 22.9, 20.9.

IR: v = 3288, 1610, 1511, 1461, 1323, 1242, 1147, 1079, 836, 654 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₇H₂₁NO₃S Na (M+Na) 342.1140, found 342.1133.

N-(2-Methoxy)-2,4,6-trimethylbenzenesulfonamide **3c**: Obtained as a white solid [method A, 72% (58 mg), method B, 91% (75 mg)].

mp = 84-86 °C.

¹H NMR (acetone-d₆, 500 MHz):

 δ = 7.19 (*dd*, *J* = 8.0, 1.5 Hz, 1H), 6.98 (*dd*, *J* = 7.5, 1.5 Hz, 1H), 6.86 (*s*, 2H), 6.76 (*m*, 2H), 5.22 (*t*, *J* = 6.5 Hz, 1H, NH), 4.08 (*d*, *J* = 6.5 Hz, 2H, CH₂), 3.77 (*s*, 3H, MeO), 2.61 (*s*, 6H, Me), 2.27 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

δ = 141.8, 138.8, 133.9, 131.6, 129.6, 129.1, 124.2, 120.4, 109.9, 55.0, 43.4, 22.7, 20.8. IR: v = 3321, 1606, 1498, 1314, 1250, 1164, 1153, 1042, 836, 746, 657 cm⁻¹. HRMS (ESI) *m/z* calcd. For C₁₇H₂₁NO₃SNa (M+Na) 342.1140, found 342.1142.

OMe N-(4-Methoxy-2,6-dimethylbenzyl)-2,4,6-

trimethylbenzenesulfonamide 3d:

Obtained as a white solid [method A, 48% (42 mg), method B, 78% (68 mg)].

mp = 84-86 °C.

¹H NMR (CDCl₃, 500 MHz):

δ = 7.00 (s, 2H), 6.55 (s, 2H), 4.19 (t, J = 3.0 Hz, 1H, NH), 4.00 (d, J = 5.5 Hz, 2H, CH₂), 3.76 (s, 3H, MeO), 2.67 (s, 6H, Me), 2.34 (s, 3H, Me), 2.18 (s, 6H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

δ = 158.9, 142.2, 139.3, 138.9, 132.8, 131.9, 124.3, 113.6, 55.0, 40.3, 22.9, 20.9, 19.4. IR: v = 3274, 1605, 1508, 1427, 1321, 1222, 1150, 1074, 830, 655 cm⁻¹. HRMS (ESI) *m/z* calcd. For C₁₉H₂₅NO₃SNa (M+Na) 370.1453, found 370.1459.

2,4,6-Trimethyl-*N*-(2-methylbenzyl)benzenesulfonamide **3e**:

Obtained as a white solid [method A, 80% (60 mg), method B, 91% (69 mg)].

mp = 120-123 °C.

¹H NMR (CDCl₃, 500 MHz):

δ = 7.19 (*m*, 1H), 7.14 (*m*, 1H), 7.11 (*m*, 2H), 6.99 (*s*, 2H), 4.54 (*t*, *J* = 5.5 Hz, 1H, NH), 4.05 (*d*, *J* = 6.0 Hz, 2H, CH₂), 2.66 (*s*, 6H, Me), 2.34 (*s*, 3H, Me), 2.25 (*s*, 3H, Me). ¹³C NMR (CDCl₃, 125.8 MHz): δ = 142.3, 139.2, 136.6, 134.0, 131.9, 128.8, 128.2, 126.1, 44.7, 22.9, 20.9, 18.6. IR: v = 3298, 1605, 1406, 1319, 1158, 1056, 758, 655 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₇H₂₁NO₂SNa (M+Na) 326.1191, found 326.1184.

N-(4-(1H-Pyrrol-1-yl)benzyl)-2,4,6-

trimethylbenzenesulfonamide 3f:

Obtained as a white solid [method A, 70% (61 mg), method B, 91% (81 mg)].

mp = 131-134 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.28 (*d*, *J* = 8.5 Hz, 2H), 7,23 (*d*, *J* = 8.5 Hz, 2H), 7.05 (*t*, *J* = 2.2 Hz, 2H), 6.96 (*s*, 2H), 6.35 (*t*, *J* = 2.2 Hz, 2H), 4.88 (*br s*, 1H, NH), 4.11 (*d*, *J* = 6.2 Hz, 2H, CH₂), 2.65 (*s*, 6H, Me), 2.31 (*s*, 3H, Me). ¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 142.4, 140.2, 139.0, 133.7, 133.6, 131.9, 129.0, 120.3, 119.1, 110.5, 46.1, 22.9, 20.8. IR: v = 3328, 1526, 1400, 1324, 1153, 1074, 834, 734, 654 cm⁻¹

HRMS (ESI) *m*/*z* calcd. For C₂₀H₂₂N₂O₂SNa (M+Na) 377.1300, found 377.1309.

(trifluoromethyl)benzyl)benzenesulfonamide **3g**:

Obtained as a white solid [method A, 76% (68 mg), method B, 61% (54 mg)].

mp = 91-94 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.47 (*d*, *J* = 8.0 Hz, 2H), 7.28 (*d*, *J* = 8.0 Hz, 2H), 6.91 (*s*, 2H), 5.19 (*t*, *J* = 6.0 Hz, 1H, NH), 4.16 (*d*, *J* = 6.0 Hz, 2H, CH₂), 2.61 (*s*, 6H, Me), 2.29 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 142.5, 140.4, 138.9, 133.4, 131.9, 129.9 (*d*, *J* = 32.9 Hz), 128.0, 125.4 (*q*, *J* = 3.7 Hz), 123.9 (*d*, *J* = 272.3 Hz), 46.2, 22.9, 20.8.

¹⁹F NMR (CDCl₃, 470.84 MHz):

$$\delta$$
 = -62.6.

IR: v = 3284, 1607, 1445, 1325, 1144, 1115, 1067, 850, 656 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₇H₁₇NO₂F₃S (M-H) 356.0932, found 356.0945.

F *N*-(4-Fluorobenzyl)-2,4,6-trimethylbenzenesulfonamide **3h**:

Obtained as a white solid [method A, 84% (65 mg), method B, 87% (67 mg)].

mp = 88-90 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.14 (*m*, 2H), 6.96 (*s*, 2H), 6.93 (*d*, *J* = 8.5 Hz, 2H), 4.80 (*t*, *J* = 3.0 Hz, 1H, NH), 4.06 (*d*, *J* = 6.2 Hz, 2H, CH₂), 2.63 (*s*, 6H, Me), 2.32 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 162.2 (*d*, *J* = 281.0 Hz), 142.3, 139.0, 133.5, 132.2, 131.9, 129.5 (*d*, *J* = 8.2 Hz), 115.4 (*d*, *J* = 21.5 Hz), 46.0, 22.8, 20.8.

¹⁹F NMR (CDCl₃, 470.84 MHz):

 δ = -114.3.

IR: v = 3277, 1604, 1508, 1427, 1321, 1221, 1150, 1075, 837, 656 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₆H₁₈NO₂FSNa (M+Na) 330.0940, found 330.0943.

CN *N*-(4-Cyanobenzyl)-2,4,6-trimethylbenzenesulfonamide **3i**: Obtained as an oil [method A, 44% (34 mg), method B, 77% (60 mg)].

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.51 (*d*, *J* = 8.0 Hz, 2H), 7.30 (*d*, *J* = 8.0 Hz, 2H), 6.93 (*s*, 2H), 5.25 (*t*, *J* = 6.0 Hz, 1H, NH), 4.16 (*d*, *J* = 6.5 Hz, 2H, CH₂), 2.60 (*s*, 6H, Me), 2.31 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

δ = 142.6, 142.1, 138.9, 133.4, 132.2, 132.0, 128.2, 118.4, 111.4, 46.1, 22.8, 20.8. IR: v = 3281, 2228, 1607, 1452, 1324, 1153, 1058, 849, 655 cm⁻¹. HRMS (ESI) *m/z* calcd. For C₁₇H₁₇N₂O₂S (M-H) 313.1011, found 313.1013.

 \dot{H} N-(4-Formylbenzyl)-2,4,6-trimethylbenzenesulfonamide **3j**: Obtained as a yellowish solid [method B, 51% (41 mg)].

mp = 110-115 °C.

¹H NMR (CDCl₃, 500 MHz):

δ = 9.95 (s, 1H, CHO), 7.75 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 6.95 (s, 2H), 5.13 (t, J = 6.0 Hz, 1H, NH), 4.18 (d, J = 6.0 Hz, 2H, CH₂), 2.62 (s, 6H, Me), 2.30 (s, 3H, Me). ¹³C NMR (CDCl₃, 125.8 MHz): δ = 191.7, 143.4, 142.5, 139.0, 135.7, 133.4, 132.0, 129.9, 128.2, 46.3, 22.9, 20.8. IR: v = 3320, 1694, 1609, 1421, 1322, 1153, 1068, 841, 657 cm⁻¹ HRMS (ESI) *m/z* calcd. For C₁₇H₁₈NO₃S (M-H) 316.1006, found 316.1006.

N-(4-Benzoylbenzyl)-2,4,6-trimethylbenzenesulfonamide **3k**:

Obtained as a white solid [method A, 60% (59 mg), method B, 55% (54 mg)].

mp = 112-116 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.75 (*dd*, *J* = 8.5, 1.0 Hz, 2H), 7,69 (*d*, *J* = 8.0 Hz, 2H), 7.60 (*dt*, *J* = 7.5, 1.0 Hz, 1H), 7.49 (*t*, *J* = 8.0 Hz, 2H), 7.30 (*d*, *J* = 8.5 Hz, 2H), 6.96 (*s*, 2H), 4.95 (*t*, *J* = 6.0 Hz, 1H, NH), 4.20 (*d*, *J* = 6.5 Hz, 2H, CH₂), 2.65 (*s*, 6H, Me), 2.31 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 196.0, 142.4, 141.0, 139.0, 137.3, 137.0, 132.4, 131.9, 130.3, 129.9, 128.2, 127.5, 46.4, 22.9, 20.9.

IR: v = 3288, 1646, 1608, 1427, 1319, 1282, 1057, 900, 746, 698, 656 cm⁻¹

HRMS (ESI) *m*/*z* calcd. For C₂₃H₂₃NO₃SNa (M+Na) 416.1296, found 416.1317.

Methyl 3-((2,4,6

Trimethylphenylsulfonamido)methyl)benzoate **3I**: Obtained as a white solid [method B, 44% (49 mg)].

mp = 87-89 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.89 (*d*, *J* = 7.5 Hz, 1H), 7.80 (*s*, 1H), 7.40 (*d*, *J* = 7.5 Hz, 1H), 7.33 (*t*, *J* = 7.5 Hz, 1H), 6.92 (*s*, 2H), 4.97 (*t*, *J* = 6.0 Hz, 1H, NH), 4.15 (*d*, *J* = 6.0 Hz, 2H, CH₂), 3.90 (*s*, 3H, MeO₂C), 2.63 (*s*, 6H, Me), 2.29 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 166.5, 142.3, 138.9, 136.7, 132.3, 131.9, 130.3, 128.9, 128.8, 128.6, 52.1, 46.4, 22.9, 20.8. IR: v = 3317, 1712, 1307, 1287, 1151, 1062, 754, 656 cm⁻¹

HRMS (ESI) *m*/*z* calcd. For C₁₈H₂₁NO₄SNa (M+Na) 370.1089, found 370.1083.

2,4,6-Trimethyl-*N*-(naphthalen-1-ylmethyl)benzenesulfonamide:

¹H NMR (acetone-d₆, 500 MHz):

δ = 7.82 (*m*, 3H), 7.48 (*m*, 2H), 7.33 (*m*, 2H), 6.98 (*s*, 2H), 4.70 (*t*, *J* = 5.5 Hz, 1H, NH), 4.50 (*d*, *J* = 6.0 Hz, 2H, CH₂), 2.64 (*s*, 6H, Me), 2.34 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 142.3, 139.3, 133.7, 133.1, 131.9, 131.4, 131.1, 129.0, 128.7, 127.0, 126.5, 126.0, 125.1, 123.1, 44.9, 22.9, 20.9.

IR: v = 3326, 1600, 1387, 1154, 1049, 776, 660 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₂₀H₂₀NO₂S (M-H) 338.1215, found 338.1200.

 N^{2} 2,4,6-Trimethyl-*N*-(pyridin-3-ylmethyl)benzenesulfonamide **4a**: Obtained as a white solid [method B, 89% (64 mg)].

mp = 106-108 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 8.44 (*d*, *J* = 3.5 Hz, 1H), 8.36 (*s*, 1H), 7.57 (*d*, *J* = 8.0 Hz, 1H), 7.19 (*dd*, *J* = 8.0, 5.0 Hz, 1H), 6.94 (*s*, 2H), 5.50 (*t*, *J* = 6.0 Hz, 1H, NH), 4.11 (*d*, *J* = 6.5 Hz, 2H, CH₂), 2.62 (*s*, 6H, Me), 2.30 (*s*, 3H, Me). ¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 148.9, 142.4, 139.0, 135.8, 133.4, 131.9, 123.5, 44.1, 22.8, 20.8.

IR: v = 3307, 1734, 1602, 1451, 1324, 1148, 1062, 829, 655 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₅H₁₉N₂O₂SNa (M+H) 291.1167, found 291.1171.

OMe N-((6-Methoxypyridin-3-yl)methyl)-2,4,6-

trimethylbenzenesulfonamide 4b:

Obtained as a white solid [method B, 92% (74 mg)].

mp = 111-114 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.89 (*d*, *J* = 1.0 Hz, 1H), 7.40 (*dd*, *J* = 8.5, 2.0 Hz, 1H), 6.93 (*s*, 2H), 6.60 (*d*, *J* = 8.5 Hz, 1H), 5.04 (*t*, *J* = 5.5 Hz, 1H, NH), 4.00 (*d*, *J* = 6.5 Hz, 2H, CH₂), 3.86 (*s*, 3H, OMe), 2.81 (*s*, 6H, Me), 2.29 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

δ = 163.8, 146.0, 142.3, 139.0, 138.6, 133.4, 131.9, 124.8, 110.8, 53.4, 43.6, 22.8, 20.8. IR: ν = 3338, 1736, 1614, 1494, 1322, 1152, 1023, 858, 658 cm⁻¹ HRMS (ESI) *m/z* calcd. For C₁₆H₂₁N₂O₃S (M+H) 321.1273, found 321.1268.

F N-((6-Fluoropyridin-3-yl)methyl)-2,4,6-

trimethylbenzenesulfonamide 4c:

Obtained as a white solid [method B, 88% (68 mg)].

mp = 100-103 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.98 (*d*, *J* = 2.0 Hz, 1H), 7.68 (*dt*, *J* = 8.0, 2.5 Hz, 1H), 6.95 (*s*, 2H), 6.81 (*dd*, *J* = 8.0, 2.5 Hz, 1H), 5.31 (*t*, *J* = 6.0 Hz, 1H, NH), 4.10 (*d*, *J* = 6.5 Hz, 2H, CH₂), 2.61 (*s*, 6H, Me), 2.30 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 163.1 (*d*, *J* = 240.0 Hz), 146.7 (*d*, *J* = 15.0 Hz), 142.6, 141.0 (*d*, *J* = 8.2 Hz), 138.9, 133.4, 132.0, 130.1 (*d*, *J* = 4.4 Hz), 109.4 (*d*, *J* = 37.8 Hz), 43.2, 22.8, 20.8.

¹⁹F NMR (CDCl₃, 470.84 MHz):

 δ = -69.1.

IR: v = 3300, 1345, 1314, 1155, 1060, 837, 656 cm⁻¹.

HRMS (ESI) m/z calcd. For C₁₅H₁₆N₂O₂FS (M-H) 307.0917, found 307.0919.

mp = 95-98 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.19 (*dd*, *J* = 5.0, 1.5 Hz, 1H), 6.97 (*s*, 2H), 6.88 (*dd*, *J* = 5.0, 1.5 Hz, 1H), 6.84 (*d*, *J* = 3.0 Hz, 1H), 4.82 (*t*, *J* = 5.5 Hz, 1H, NH), 4.30 (*d*, *J*=6.00 Hz, 2H, CH₂), 2.65 (*s*, 6H, Me), 2.32 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 142.3, 139.2, 139.0, 133.3, 131.9, 126.8, 126.3, 125.7, 41.5, 22.9, 20.8.

IR: v = 3277, 1733, 1316, 1155, 1066, 850, 705, 655 cm⁻¹

HRMS (ESI) *m*/*z* calcd. For C₁₄H₁₇NO₂S₂Na (M+Na) 318.0598, found 318.0609.

N-((5-Acetylthiophen-2-yl)methyl)-2,4,6-

trimethylbenzenesulfonamide **4e**:

Obtained as a white solid [method B, 83% (70 mg)].

mp = 133-136 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.46 (*d*, *J* = 3.5 Hz, 1H), 6.96 (*s*, 2H), 6.90 (*d*, *J* = 3.5 Hz, 1H), 5.04 (*br s*, 1H, NH), 4.32 (*d*, *J* = 6.00 Hz, 2H, CH₂), 2.64 (*s*, 6H, Me), 2.49 (*s*, 3H, Ac), 2.30 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 190.3, 148.4, 144.1, 142.6, 139.2, 133.2, 132.3, 132.0, 131.8, 126.9, 41.8, 26.5, 22.9, 20.8. IR: v = 3287, 1647, 1332, 1150, 1057, 852, 656 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₆H₁₉NO₃S₂Na (M+Na) 360.0704, found 360.0692.

S 2,4,6-Trimethyl-*N*-(thiophen-3-ylmethyl)benzenesulfonamide **4f**:

Obtained as a white solid [method B, 83% (64 mg)].

mp = 76-78 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.22 (*dd*, *J* = 5.0, 2.5 Hz, 1H), 7.05 (*s*, 1H), 6.96 (*s*, 2H), 6.87 (*d*, *J* = 5.0 Hz, 1H), 4.82 (*br s*, 1H, NH), 4.11(*d*, *J* = 6.0 Hz, 2H, CH₂), 2.64 (*s*, 6H, Me), 2.32 (*s*, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 142.2, 139.1, 137.2, 133.5, 131.9, 127.0, 126.4, 122.8, 41.8, 22.9, 20.8.

IR: v = 3285, 1732, 1418, 1315, 1154, 1066, 850, 787, 656 cm⁻¹

HRMS (ESI) *m*/*z* calcd. For C₁₄H₁₇NO₂S₂Na (M+Na) 318.0598, found 318.0601.

N-((5-Formylfuran-2-yl)methyl)-2,4,6-

trimethylbenzenesulfonamide 4g:

Obtained as a yellowish oil [method B, 26% (20 mg)].

¹H NMR (CDCl₃, 500 MHz):

 δ = 9.45 (s, 1H, CHO), 7.01 (d, J = 3.5 Hz, 1H), 6.89 (s, 2H), 6.29 (d, J = 3.5 Hz, 1H), 5.30 (t, J = 6.0 Hz, 1H, NH), 4.26 (d, J = 6.5 Hz, 2H, CH₂), 2.61 (s, 6H, Me), 2.27(s, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

δ = 177.1, 156.5, 152.3, 142.4, 138.9, 133.5, 131.8, 110.4, 39.6, 22.7, 20.8. IR: v = 3736, 2360, 1654, 1537, 1320, 1158, 1026, 650 cm⁻¹. HRMS (ESI) *m/z* calcd. For C₁₅H₁₇NO₄SNa (M+Na) 330.0776, found 330.0788.

OMe N-(4-Methoxybenzyl)benzenesulfonamide 5a:

Obtained as a white solid [method B, 70% (49 mg)].

mp = 72-75 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.89 (*m*, 2H), 7.60 (*m*, 1H), 7.54 (*m*, 2H), 7.11 (*m*, 2H), 6.81 (*m*, 2H), 4.54 (*t*, *J* = 5.5 Hz, 1H, NH), 4.10 (*d*, *J* = 6.0 Hz, 2H, CH₂), 3.79 (*s*, 3H, OMe).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 159.2, 139.8, 132.6, 129.2, 129.0, 128.1, 127.0, 114.0, 55.2, 46.7.

IR: v = 3279, 1612, 1512, 1254, 1158, 1032, 729, 685 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₄H₁₅NO₃SNa (M+Na) 300.0670, found 300.0665.

OMe *N*-(4-Methoxybenzyl)-4-methylbenzenesulfonamide **5b**:

Obtained as a white solid [method B, 76% (55 mg)].

mp = 114-117 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.75 (*d*, *J* = 8.5 Hz, 2H), 7.31 (*d*, *J* = 8.5 Hz, 2H), 7.11 (*d*, *J* = 8.5 Hz, 2H), 6.79 (*dd*, *J* = 6.5, 2.0 Hz, 2H), 4.74 (*t*, *J* = 6.0 Hz, 1H, NH), 4.05 (*d*, *J* = 6.0 Hz, 2H, CH₂), 3.77 (s, 3H, OMe), 2.44 (s, 3H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 143.4, 136.8, 129.6, 129.2, 128.2, 127.1, 114.0, 51.2, 46.7, 21.4.

IR: v = 3247, 1515, 1321, 1253, 1158, 1031, 817 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₅H₁₇NO₃SNa (M+Na) 314.0827, found 314.0829.

OMe 4-Methoxy-*N*-(4-methoxybenzyl)benzenesulfonamide **5c**: Obtained as a white solid [method B, 70% (54 mg)].

mp = 106-108 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ =7.79 (*d*, *J* = 9.0 Hz, 2H), 7.11 (*d*, *J* = 8.5 Hz, 2H), 6.97 (*d*, *J* = 9.0 Hz, 2H), 6.79 (*d*, *J* = 9.0 Hz, 2H), 4.76 (*t*, *J* = 6.0 Hz, 1H, NH), 4.04 (*d*, *J* = 6.5 Hz, 2H, CH₂), 3.88 (*s*, 3H, OMe), 3.77 (*s*, 3H, OMe). ¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 162.8, 159.2, 131.4, 129.2, 129.1, 128.2, 114.2, 114.0, 55.5, 55.2, 46.7.

IR: ν = 3253, 1596, 1518, 1415, 1306, 1258, 1148, 1027, 838, 678 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₅H₁₇NO₄SNa (M+Na) 330.0776, found 330.0789.

OMe *N*-(4-Methoxybenzyl)naphthalene-1-sulfonamide **5d**:

Obtained as a colorless oil [method B, 77% (63 mg)].

¹H NMR (CDCl₃, 500 MHz):

 δ = 8.65 (*d*, *J* = 8.5 Hz, 1H), 8.27 (*dd*, *J* = 8.0, 1.5 Hz, 1H), 8.07 (*d*, *J* = 8.0 Hz, 1H), 7.96 (*d*, *J* = 8.0 Hz, 1H), 7.66 (*m*, 1H), 7.61 (*td*, *J* = 8.0, 1.0 Hz, 1H), 7.53 (*t*, *J* = 8.0 Hz, 1H), 6.96 (*d*, *J* = 8.5 Hz, 2H), 6.67 (*d*, *J* = 8.5 Hz, 2H), 5.0 (*t*, *J* = 6.0 Hz, 1H, NH), 4.02 (*d*, *J* = 6.0 Hz, 2H, CH₂), 3.73 (*s*, 3H, OMe). ¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 159.1, 134.4, 134.2, 134.1, 129.8, 129.1, 128.3, 128.1, 128.0, 126.8, 124.2, 124.1, 113.8, 55.2, 46.8.

IR: v = 3297, 1612, 1513, 1249, 1160, 1133, 1032, 804, 771 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₈H₁₇NO₃SNa (M+Na) 350.0827, found 350.0824.

OMe 2,4,6-Triisopropyl-N-(4-methoxybenzyl)benzenesulfonamide

5e:

Obtained as a white solid [method B, 24% (24 mg)].

mp = 94-96 °C.

¹H NMR (acetone-d₆, 400 MHz):

 δ = 7.19 (s, 2H), 7.12 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 4.5 (t, J = 6.0 Hz, 1H, NH), 4.19 (*sept.*, J = 7.0 Hz, 2H, CH(Me)₂), 4.09 (d, J = 6.0 Hz, 2H, CH₂), 3.78 (s, 3H, OMe), 2.93 (*sept.*, J = 7.0 Hz, 1H, CH(Me)₂), 1.28 (t, J = 7.0 Hz, 18H, Me).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 159.2, 152.8, 150.2, 132.2, 129.4, 128.4, 123.7, 114.0, 55.2, 46.4, 34.1, 29.6, 24.8, 23.5.

IR: v = 3299, 2960, 1602, 1512, 1248, 1151, 1040, 850, 656 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₂₃H₃₃NO₃SNa (M+Na) 426.2079, found 426.2090.

OMe 4-Fluoro-N-(4-methoxybenzyl)benzenesulfonamide **5f**:

Obtained as a white solid [method B, 64% (47 mg)].

mp = 90-93 °C.

¹H NMR (CDCl₃, 500 MHz):

 δ = 7.86 (*ddd*, *J* = 8.5, 5.0, 2.0 Hz , 2H), 7.18 (*t*, *J* = 8.5 Hz, 2H), 7.10 (*d*, *J* = 8.5 Hz, 2H), 6.80 (*d*, *J* = 8.5 Hz, 2H), 4.81 (*t*, *J* = 6.0 Hz, 1H, NH), 4.09 (*d*, *J* = 6.0 Hz, 2H, CH₂), 3.78 (*s*, 3H, OMe).

¹³C NMR (CDCl₃, 125.8 MHz):

 δ = 164.9 (*d*, *J* = 126.0 Hz), 159.3, 136.0, 129.8 (*d*, *J* = 9.3 Hz), 129.2, 127.9, 116.2 (*d*, *J* = 22.5 Hz), 114.0, 55.2, 46.7.

¹⁹F NMR (CDCl₃, 470.84 MHz):

 δ = -105.3.

IR: v = 3254, 1590, 1514, 1251, 1152, 1032, 842 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₄H₁₄NO₃SFNa (M+Na) 318.0576, found 318.0576.

OMe N-(4-(N-(4-methoxybenzyl)sulfamoyl)phenyl)acetamide

5g:

Obtained as a white solid [method B, 42% (35 mg)].

mp = 164-167°C.

¹H NMR (acetone-d₆, 400 MHz):

 δ = 9.57 (br s, 1H, NH), 7.81 (d, J = 9.0 Hz, 2H), 7.77 (d, J = 9.0 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 6.67 (t, J = 6.0 Hz, 1H, NH), 4.04 (d, J = 6.5 Hz, 2H, CH₂), 3.77 (s, 3H, OMe), 2.14 (s, 3H, Me).

¹³C NMR (acetone-d₆, 125.8 MHz):

 δ = 168.6, 159.1, 145.7, 143.2, 141.5, 129.0, 127.9, 118.4, 113.5, 54.5, 46.2, 23.4.

IR: v = 3359, 3230, 1676, 1594, 1515, 1304, 1147, 830, 617 cm⁻¹.

HRMS (ESI) *m*/*z* calcd. For C₁₆H₁₈N₂O₄SNa (M+Na) 333.0909, found 333.0903.

Table1

¹H NMR (acetone-d₆, 400MHz) spectrum of Potassium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2a**:

ppm

Ó

ppm

¹³C NMR (DMSO-d₆, 125.8 MHz) spectrum of Potassium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate 2a:

¹⁹F NMR (DMSO-d₆, 470.8 MHz) Potassium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2a**:

- -141.909

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2a**:

¹H NMR (acetone-d₆, 300 MHz) spectrum of Cesium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2b**

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Cesium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2b**

BF₃Cs 2b

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Cesium 2,4,6-Trimethylphenylsulfonamidomethyltrifluoroborate **2b**

3.185

BF₃Cs N 2b

¹³C NMR (DMSO-d₆, 125.8 MHz) Potassium 4-Methylphenylsulfonamidomethyltrifluoroborate **2c**

¹⁹F NMR (DMSO-d₆, 470.8 MHz) Potassium 4-Methylphenylsulfonamidomethyltrifluoroborate **2c**

¹¹B NMR (DMSO-d₆, 128.4 MHz) Potassium 4-Methylphenylsulfonamidomethyltrifluoroborate **2c**

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Potassium ((2,4,6-Triisopropylphenylsulfonamido)methyl)trifluoroborate 2d

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium ((2,4,6-Triisopropylphenylsulfonamido)methyl)trifluoroborate **2d**

2.459

S39

¹³C NMR (DMSO-d₆, 125.8 MHz) spectrum of Potassium 4-Methoxyphenylsulfonamidomethyltrifluoroborate 2e

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 4-Methoxyphenylsulfonamidomethyltrifluoroborate 2e

2.754

S43

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Potassium Phenylsulfonamidomethyltrifluoroborate 2f

--- -140.969

¹¹B NMR (DMSO-d₆, 128.4MHz) spectrum of Potassium Phenylsulfonamidomethyltrifluoroborate **2f**

¹³C NMR (DMSO-d₆, 125.8MHz) spectrum of Potassium 2-Naphthylsulfonamidomethyltrifluoroborate 2g

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 2-Naphthylsulfonamidomethyltrifluoroborate **2g**

¹H NMR (acetone-d₆, 400 MHz) spectrum of Potassium 1-Naphthylsulfonamidomethyltrifluoroborate **2h**

¹¹B NMR (DMSO-d₆, 125.8 MHz) spectrum of Potassium 1-Naphthylsulfonamidomethyltrifluoroborate **2h**

¹³C NMR (acetone-d₆, 125.8 MHz) spectrum of Potassium Thiophene-2sulfonamidomethyltrifluoroborate 2i

¹⁹F NMR (acetone-d₆, 470.8 MHz) spectrum of Potassium Thiophene-2sulfonamidomethyltrifluoroborate 2i

¹¹B NMR (acetone-d₆, 500 MHz) spectrum of Potassium Thiophene-2sulfonamidomethyltrifluoroborate **2i**

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 2-Nitrophenylsulfonamidomethyltrifluoroborate **2**j

¹H NMR (DMSO-d₆, 500 MHz) spectrum of Potassium 4-Nitrophenylsulfonamidomethyltrifluoroborate **2k**

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Potassium 4-Nitrophenylsulfonamidomethyltrifluoroborate 2k

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 4-Nitrophenylsulfonamidomethyltrifluoroborate 2k

¹H NMR (DMSO-d₆, 500 MHz) spectrum of Potassium 2-Bromophenylsulfonamidomethyltrifluoroborate **2**l

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Potassium 2-Bromophenylsulfonamidomethyltrifluoroborate 2l

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 2-Bromophenylsulfonamidomethyltrifluoroborate **2**l

¹H NMR (DMSO-d₆, 500 MHz) spectrum of Potassium 4-Bromophenylsulfonamidomethyltrifluoroborate **2m**

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

¹³C NMR (DMSO-d₆, 125.8 MHz) spectrum of Potassium 4-Bromophenylsulfonamidomethyltrifluoroborate **2m**

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Potassium 4-Bromophenylsulfonamidomethyltrifluoroborate 2m

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 4-Bromophenylsulfonamidomethyltrifluoroborate **2m**

¹H NMR (DMSO-d₆, 500 MHz) spectrum of Potassium 2,6-Dichlorophenylsulfonamidomethyltrifluoroborate **2n**

¹³C NMR (DMSO-d₆, 125.8 MHz) spectrum of Potassium 2,6-Dichlorophenylsulfonamidomethyltrifluoroborate 2n

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Potassium 2,6-Dichlorophenylsulfonamidomethyltrifluoroborate 2n

- - 142.310

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 2,6-Dichlorophenylsulfonamidomethyltrifluoroborate 2n

¹³C NMR (DMSO-d₆, 125.8 MHz) spectrum of Potassium 4-Acetamidophenylsulfonamidomethyltrifluoroborate 20

¹⁹F NMR (DMSO-d₆, 470.8 MHz) spectrum of Potassium 4-Acetamidophenylsulfonamidomethyltrifluoroborate 20

¹¹B NMR (DMSO-d₆, 128.4 MHz) Potassium 4-Acetamidophenylsulfonamidomethyltrifluoroborate **20**

¹H NMR (DMSO-d₆, 500 MHz) spectrum of Potassium 4-Fluorophenylsulfonamidomethyltrifluoroborate **2p**

¹³C NMR (DMSO-d₆, 125.8 MHz) spectrum of Potassium 4-Fluorophenylsulfonamidomethyltrifluoroborate 2p

¹¹B NMR (DMSO-d₆, 128.4 MHz) spectrum of Potassium 4-Fluorophenylsulfonamidomethyltrifluoroborate **2p**

Table2

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-Benzyl-2,4,6-trimethylbenzenesulfonamide

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

80

70

60

50

40 30

20

10 ppm

190 180 170 160 150 140 130 120 110 100 90

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-Benzyl-2,4,6trimethylbenzenesulfonamide **3a**

¹³C NMR (CDCl₃, 500 MHz) spectrum of *N*-(4-Methoxybenzyl)-2,4,6trimethylbenzenesulfonamide **3b**

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(2-Methoxy)-2,4,6trimethylbenzenesulfonamide **3**c

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(4-Methoxy-2,6-dimethylbenzyl)-2,4,6trimethylbenzenesulfonamide **3d**

7.270 7.005	6.547	4.191 3.991 3.757	2.672 2.338 2.178
		$\setminus \lor /$	

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-(4-Methoxy-2,6-dimethylbenzyl)-2,4,6trimethylbenzenesulfonamide **3d**

¹H NMR (CDCl₃, 500 MHz) spectrum of 2,4,6-Trimethyl-*N*-(2methylbenzyl)benzenesulfonamide **3e**

7.271 7.207 7.191 7.184 7.149 7.149 7.114 7.114 7.114 7.114 7.116	4.573 4.562 4.059 4.047	2.663	2.336 2.249
	\vee \vee		$\backslash /$

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(4-(1H-Pyrrol-1-yl)benzyl)-2,4,6trimethylbenzenesulfonamide **3f**

¹³C NMR (CDCl₃, 125.6 MHz) spectrum of *N*-(4-(1H-Pyrrol-1-yl)benzyl)-2,4,6trimethylbenzenesulfonamide **3f**

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

¹³C NMR (acetone, 125.8 MHz) spectrum of 2,4,6-Trimethyl-*N*-(4-(trifluoromethyl)benzyl)benzenesulfonamide **3g**

¹⁹F NMR (acetone, 500 MHz) spectrum of 2,4,6-Trimethyl-*N*-(4-(trifluoromethyl)benzyl)benzenesulfonamide **3g**

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

80

70

60

50

40 30

20

10 ppm

190 180 170 160 150 140 130 120 110 100 90

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-(4-Fluorobenzyl)-2,4,6trimethylbenzenesulfonamide **3h**

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(4-Cyanobenzyl)-2,4,6trimethylbenzenesulfonamide **3i**

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-(4-Cyanobenzyl)-2,4,6trimethylbenzenesulfonamide **3i**

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(4-Formylbenzyl)-2,4,6trimethylbenzenesulfonamide **3**j

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-(4-Formylbenzyl)-2,4,6trimethylbenzenesulfonamide **3**j

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(4-Benzoylbenzyl)-2,4,6trimethylbenzenesulfonamide **3k**

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of Methyl 3-((2,4,6-

Table3

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2,4,6-Trimethyl-*N*-(pyridin-3-ylmethyl)benzenesulfonamide **4a**

148,877 142,362 142,362 138,968 135,718 133,451 132,405 131,940 131,940 123,405	77.249 76.995 76.741	44.012	22.860 20.842
	\bigvee		

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-((6-Methoxypyridin-3-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4b**

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-((6-Methoxypyridin-3-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4b**

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-((6-Fluoropyridin-3-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4**c

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-((6-Fluoropyridin-3-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4c**

164.024 162.117 146.739 146.622 142.595 141.028 141.028 141.028 141.028 133.364 133.364 131.372 133.364 131.772 133.073 130.073	109.536 109.238	77.210 76.955 76.701	43.230	22.811 20.813
	Y	\bigvee		

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹⁹F NMR (CDCl₃, 470.8 MHz) spectrum of *N*-((6-Fluoropyridin-3-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4c**

¹H NMR (CDCl₃, 500 MHz) spectrum of 2,4,6-Trimethyl-N-(thiophen-2-ylmethyl)benzenesulfonamide **4d**

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-((5-Acetylthiophen-2-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4e**

¹³C NMR (CDCl₃, 500 MHz) spectrum of *N*-((5-Acetylthiophen-2-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4e**

¹H NMR (CDCl₃, 500 MHz) spectrum of 2,4,6-Trimethyl-*N*-(thiophen-3-ylmethyl)benzenesulfonamide **4f**

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-((5-Formylfuran-2-yl)methyl)-2,4,6trimethylbenzenesulfonamide **4g**

Table 4

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(4-Methoxybenzyl)benzenesulfonamide **5a**

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-(4-Methoxybenzyl)benzenesulfonamide **5a**

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-(4-Methoxybenzyl)-4methylbenzenesulfonamide **5b**

¹H NMR (CDCl₃, 500 MHz) spectrum of 4-Methoxy-*N*-(4-methoxybenzyl)benzenesulfonamide **5c**

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-Methoxy-*N*-(4-methoxybenzyl)benzenesulfonamide **5**c

¹H NMR (CDCl₃, 500 MHz) spectrum of N-(4-Methoxybenzyl)naphthalene-1-sulfonamide **5d**

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-(4-Methoxybenzyl)naphthalene-1-sulfonamide **5d**

¹H NMR (CDCl₃, 500 MHz) spectrum of 2,4,6-Triisopropyl-*N*-(4-methoxybenzyl)benzenesulfonamide **5e**

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2,4,6-Triisopropyl-*N*-(4-methoxybenzyl)benzenesulfonamide 5e

¹H NMR (CDCl₃, 500 MHz) spectrum of 4-Fluoro-*N*-(4-methoxybenzyl)benzenesulfonamide **5**f

0 -20 -40 -60 -80 -100 -120 -140 -160 -180 ppm

¹H NMR (acetone-d₆, 500 MHz) spectrum of *N*-(4-(*N*-(4-Methoxybenzyl)sulfamoyl)phenyl)acetamide **5g**

¹³C NMR (acetone-d₆, 125.8 MHz) spectrum of *N*-(4-(*N*-(4-Methoxybenzyl)sulfamoyl)phenyl)acetamide **5g**