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Supplementary Figure 1: HA and MP segment phylogenies (partial) for isolates from 

Holmes et al. The set of strains in the phylogenetic neighbourhood of A/New York/182/2000 

seem to be consistent between the two segment phylogenies suggesting that it is unlikely to be a 

reassortant (consensus trees from GiRaF, drawn using the program FigTree, 

http://tree.bio.ed.ac.uk/software/figtree/). 
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Supplementary Figure 2: Size distribution

graph shows the frequency of reassortants

and implanted reassortments for the “All Events” experiment described in 

while the size distribution of true positives matches that of the implants, false positives are more 

often large sets (≥ 6 taxa) and hence amenable to manual filtering. The trend of false positives 

being large sets is also more pronounced with multiple reassortments (data not shown).

 

Supplementary Figure 3: Confidence values for candidate reassortments.

various confidence value thresholds for the “All Events” experiment described in 

Calibration of confidence values for the same experiment 

would have a single peak (for the range 0

confidence-value in all cases. 
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: Size distribution of implanted and candidate reassortments.

frequency of reassortants as a function of the size of true positive

reassortments for the “All Events” experiment described in Table 1

while the size distribution of true positives matches that of the implants, false positives are more 

 6 taxa) and hence amenable to manual filtering. The trend of false positives 

being large sets is also more pronounced with multiple reassortments (data not shown).

Confidence values for candidate reassortments. a) Tradeoffs using 

various confidence value thresholds for the “All Events” experiment described in 

Calibration of confidence values for the same experiment – in the ideal case the histogram

would have a single peak (for the range 0-0.005) indicating that false-discovery-rate = 1 
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of implanted and candidate reassortments. The 

of true positive, false positive 

Table 1. Interestingly, 

while the size distribution of true positives matches that of the implants, false positives are more 

 6 taxa) and hence amenable to manual filtering. The trend of false positives 

being large sets is also more pronounced with multiple reassortments (data not shown). 

 

a) Tradeoffs using 

various confidence value thresholds for the “All Events” experiment described in Table 1, b) 

the ideal case the histogram shown 
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Supplementary Figure 4: Schematic for computational steps in GiRaF.  

Supplementary Figure 5: Reassortment events in human influenza A (H3N2) isolates. 

Detailed consensus trees, in following pages, for a) HA segment and b) NA segment for the 

corresponding condensed trees in Figure 1. 

Supplementary Table 1: Catalog of reassortant H5N1 Strains. The table (additional excel 

file) contains a list of 18 candidate reassortments and their reassortment architectures that were 

automatically identified by GiRaF based on all pairwise segment comparisons for a set of H5N1 

genomes. 

Supplementary Table 2: Catalog of reassortant Swine Influenza & S-OIV strains. The table 

(additional excel file) contains a list of 37 candidate reassortments among swine influenza strains 

as identified by GiRaF through a fully automated analysis. Representatives of the S-OIV strains 

involved in the recent “swine flu” outbreak were also included in the dataset and identified 

correctly as reassortants by GiRaF. 



 

a) HA segment 



 

b) NA segment 



Alternative Tree Topology 

To investigate the effect of tree topology on the results from our simulated datasets, we also 

generated datasets using an alternative topology. Specifically, we used a neighbor-joining tree 

for the HA segment of isolates from the S-OIV and swine influenza sequences and repeated the 

other steps of our experiment as described in the text. While the number of taxa in this set is 

similar to that in the original set (140 as compared to 156), the topology is more clearly 

divergent. In general, we obtained similarly good results using GiRaF on these datasets (for the 

“All Events” set, sensitivity was 94% and PPV was 90%) suggesting that the results reported in 

the text are a reasonable measure of GiRaF’s performance in general. 

Performance of Distance Test in Isolation   

To assess the utility of a distance test independent of information from tree topology in 

predicting reassortments we experimented with a heuristic approach based on Rabadan et al. For 

this, we used the test described in Rabadan et al. (only steps 1 & 2) to compare all pairs of taxa 

and identify those that have diverged with respect to each other (bonferroni-corrected E-value 

threshold of 0.01). Taxa that had identical profiles of divergence were then clustered into 

putative reassortments and sets of size less than 20 were reported. In general, this approach 

performed poorly and compared to GiRaF on the “All Events” set had low sensitivity (35%) and 

PPV (20%) values.  

Identifying Potential Parents 

For reassortments identified by GiRaF, potential parents in each segment can be computed using 

the script “get_parents.pl” that is provided with it. This script scans the set of splits for each 

segment and identifies those splits that contain the reassortment set entirely on one side. The 

corresponding sets (that contain the reassortment set) are considered potential parents with a 

confidence value given by the split. The script then selects the smallest sets with confidence 

value greater than 0.5 (the least common ancestors) and among these the most confident set is 

reported as the potential parent in each segment. 

Biclique Finding 

The biclique-finding algorithm used in GiRaF is based on the idea of using the consensus 

operation to enumerate through the space of high-confidence bicliques in the incompatibility 

graph for two segments (say A and B). Given two bicliques (L1, R1) and (L2, R2) (where Li and 

Ri are the vertex sets on the “left” and “right” of the biclique), the consensus of the bicliques is 

given by (L1 ∪ L2, R1 ∩ R2). Given two maximal bicliques (vertex sets are not contained in 

another bilcique), the consensus operation can be shown to always produce another maximal 

biclique. The algorithm used in GiRaF then uses the following steps to enumerate all maximal 

bicliques (Li, Ri) which have high confidence (i.e. CA(Li) > T and CB(Ri) > T, where CX(Y) is the 

confidence value associated with a set of splits Y based on trees for segment X and T is a 

confidence threshold parameter, that is set at 0.7 in GiRaF): 

1. Let S be the set of all star bicliques (Li, Ri) (|Li| = 1 and Ri contains all neighbors of the 

node in Li) s.t. CB(Ri) > T. 

2. Set F to S 



3. For each biclique Bi in S and Bj in F, let D = (L, R) be the consensus of Bi and Bj. If 

CB(R) > T, add D to F. 

4. If new sets were added to F in 3, repeat 3, considering only the new additions in F. 

5. Filter out all bicliques (Li, Ri) in F where CA(Li) ≤ T. Report F as the set of all high-

confidence maximal bicliques in the graph. 

While the runtime of this algorithm is linear in the number of maximal bicliques (which can be 

exponential in the size of the graph), in practice, the restriction to high-confidence bicliques 

reduces the search space drastically and makes the runtime feasible even for large graphs. 


