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Supplementary Figure 1: HA and MP segment phylogenies (partial) for isolates from
Holmes et al. The set of strains in the phylogenetic neighbourhood of A/New York/182/2000
seem to be consistent between the two segment phylogenies suggesting that it is unlikely to be a
reassortant (consensus trees from GiRaF, drawn using the program FigTree,
http://tree.bio.ed.ac.uk/software/figtree/).
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Supplementary Figure 2: Size distribution of implanted and candidate reassortments. The
graph shows the frequency of reassortants as a function of the size of true positive, false positive
and implanted reassortments for the “All Events” experiment described in Table 1. Interestingly,
while the size distribution of true positives matches that of the implants, false positives are more
often large sets (> 6 taxa) and hence amenable to manual filtering. The trend of false positives
being large sets is also more pronounced with multiple reassortments (data not shown).
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Supplementary Figure 3: Confidence values for candidate reassortments. a) Tradeoffs using
various confidence value thresholds for the “All Events” experiment described in Table 1, b)
Calibration of confidence values for the same experiment — in the ideal case the histogram shown
would have a single peak (for the range 0-0.005) indicating that false-discovery-rate = 1 —
confidence-value in all cases.
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Supplementary Figure 4: Schematic for computational steps in GiRaF.

Supplementary Figure 5: Reassortment events in human influenza A (H3N2) isolates.
Detailed consensus trees, in following pages, for a) HA segment and b) NA segment for the
corresponding condensed trees in Figure 1.

Supplementary Table 1: Catalog of reassortant H5SN1 Strains. The table (additional excel
file) contains a list of 18 candidate reassortments and their reassortment architectures that were
automatically identified by GiRaF based on all pairwise segment comparisons for a set of HSN1

genomes.

Supplementary Table 2: Catalog of reassortant Swine Influenza & S-OIV strains. The table
(additional excel file) contains a list of 37 candidate reassortments among swine influenza strains
as identified by GiRaF through a fully automated analysis. Representatives of the S-OIV strains
involved in the recent “swine flu” outbreak were also included in the dataset and identified
correctly as reassortants by GiRaF.
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Alternative Tree Topology

To investigate the effect of tree topology on the results from our simulated datasets, we also
generated datasets using an alternative topology. Specifically, we used a neighbor-joining tree
for the HA segment of isolates from the S-OIV and swine influenza sequences and repeated the
other steps of our experiment as described in the text. While the number of taxa in this set is
similar to that in the original set (140 as compared to 156), the topology is more clearly
divergent. In general, we obtained similarly good results using GiRaF on these datasets (for the
“All Events” set, sensitivity was 94% and PPV was 90%) suggesting that the results reported in
the text are a reasonable measure of GiRaF’s performance in general.

Performance of Distance Test in Isolation

To assess the utility of a distance test independent of information from tree topology in
predicting reassortments we experimented with a heuristic approach based on Rabadan et al. For
this, we used the test described in Rabadan et al. (only steps 1 & 2) to compare all pairs of taxa
and identify those that have diverged with respect to each other (bonferroni-corrected E-value
threshold of 0.01). Taxa that had identical profiles of divergence were then clustered into
putative reassortments and sets of size less than 20 were reported. In general, this approach
performed poorly and compared to GiRaF on the “All Events” set had low sensitivity (35%) and
PPV (20%) values.

Identifying Potential Parents

For reassortments identified by GiRaF, potential parents in each segment can be computed using
the script “get_parents.pl” that is provided with it. This script scans the set of splits for each
segment and identifies those splits that contain the reassortment set entirely on one side. The
corresponding sets (that contain the reassortment set) are considered potential parents with a
confidence value given by the split. The script then selects the smallest sets with confidence
value greater than 0.5 (the least common ancestors) and among these the most confident set is
reported as the potential parent in each segment.

Biclique Finding

The biclique-finding algorithm used in GiRaF is based on the idea of using the consensus
operation to enumerate through the space of high-confidence bicliques in the incompatibility
graph for two segments (say A and B). Given two bicliques (L;, R;) and (L,, R,) (where L; and
R; are the vertex sets on the “left” and “right” of the biclique), the consensus of the bicliques is
given by (L; U L, R; n Ry). Given two maximal bicliques (vertex sets are not contained in
another bilcique), the consensus operation can be shown to always produce another maximal
biclique. The algorithm used in GiRaF then uses the following steps to enumerate all maximal
bicliques (Li, R;) which have high confidence (i.e. CA(L;) > T and Cg(R;) > T, where Cx(Y) is the
confidence value associated with a set of splits Y based on trees for segment X and T is a
confidence threshold parameter, that is set at 0.7 in GiRaF):

1. Let S be the set of all star bicliques (L, R;) (ILil = 1 and R; contains all neighbors of the
node in L) s.t. Cg(R;) > T.
2. SetFtoS



3. For each biclique B; in S and B;in F, let D = (L, R) be the consensus of B; and B;. If
Csg(R)>T,add D toF.

If new sets were added to F in 3, repeat 3, considering only the new additions in F.
Filter out all bicliques (L;, R;) in F where Ca(L;) < T. Report F as the set of all high-
confidence maximal bicliques in the graph.

Nl

While the runtime of this algorithm is linear in the number of maximal bicliques (which can be
exponential in the size of the graph), in practice, the restriction to high-confidence bicliques
reduces the search space drastically and makes the runtime feasible even for large graphs.



