Fuller, et al 1

Supplementary information

Figure S1. Generation of PKA deletion and over-expression mutants. (A) Deletion of *pkaC2*. The *pkaC2* ORF was replaced with the phleomycin resistance cassette (PHLEO) via the spit marker method. Southern blot analysis of BamHI-digested genomic DNA revealed the loss of the WT 1.48 Kb band, consistent with *pkaC2* deletion. Several clones demonstrated addition ectopic integrations and were not used for further analyses. Black rectangle represents the probe. (B) Deletion of *pkaC1*. The *pkaC1* ORF was replaced with the hygromycin resistance cassette (HYG) in both the WT and $\Delta pkaC2$ strains. Southern Blot analysis of Pst1 digested genomic DNA identified the expected 4.14 Kb band in WT (left blot) or $\Delta pkaC2$ (right blot), which was truncated in $\Delta pkaC1$ or $\Delta pkaC1\Delta pkaC2$ mutants. Black rectangle represents the probe. (C) Over-expression of *pkaC2*. The *pkaC1* mutant was transformed with a construct that placed *pkaC2* under control of the *gpdA* promoter. RT-PCR revealed a large increase in the steady-state mRNA levels of *pkaC2* in the $\Delta pkaC1::PgpdA-pkaC2$ transformants relative to either the WT or the $\Delta pkaC1$ parental strain. The upper band in the $\Delta pkaC1::PgpdA-pkaC2$ lane corresponds to unspliced transcript. qRT-PCR confirmed the over-expression (right).

Figure S2. Trehalose assay. Conidia were harvested from AMM plates cultured at 37° C and then adjusted to equivalent densities with dH₂0. Conidial suspensions were then incubated at 100 °C for twenty minutes and lysate supernatants were incubated with trehalase overnight at 37°C. Following trehalase incubations, samples were assayed for the presence of glucose (Sigma, GAHK20). Data represent mean glucose concentrations in each sample, following subtraction of respective no-trehalase controls. Error bars represent the ± SD of a triplicate experiment. No statistical difference in glucose was detected between any of the strains.

Fuller, et al 2

Figure S3. Hypersensitivity of the PKA mutants to SDS. Conidia were point inoculated into wells that contained increasing concentrations of SDS in AMM agar. Plates were incubated at 37°C for 3 d.

Figure S4. Growth and virulence phenotypes of additional $\Delta pkaC1\Delta pkaC2$ isolates. (A) Radial growth rates of several $\Delta pkaC1\Delta pkaC2$ isolates compared to the growth rate of the $\Delta pkaC1$ strain. The data represent changes in colony diameter between 24 and 48 h incubation on AMM medium at 37°C. Error bars represent the ± SD of a triplicate experiment. (B) CF-1 mice were immunosuppressed with triamcinolone acetonide and inoculated intranasally with 10⁵ conidia. Mortality of mice infected with two additional $\Delta pkaC1\Delta pkaC1$ isolates was indistinguishable from saline controls.

Figure S5. Histopathology of infected mice at 48 h post-infection. Fungal lesions with associated neutrophilic infiltration are observed in all groups. Notably, sparse fungal growth could be seen in $\Delta pkaC1\Delta pkaC2$ infected mice.

Figure S6. Expression of *ags3.* qRT-PCR was used to measure message levels of the transcript for *ags3* in the WT and the $\Delta pkaC1$ mutant. The primer is pair is that described by Ejzykowicz, et al., 2009, and is given in Table 1.

Figure S7. *In vitro* **phosphorylation of the PKA substrate kemptide.** Conidia of the indicated strains were shaken in YG at 37°C overnight. Total protein was isolated by crushing the mycelium in liquid nitrogen and suspending the lysate in extraction buffer [25 mM Tris-HCl, 1 mMEDTA, 1mM DTT, 50 mM calyculin A phosphatase inihibitor (Invitrogen), protease inhibitor cocktail (Sigma, Cat.# P2714)]. Protein concentrations were determined by the BCA assay. Equivalent protein amounts were tested for the ability to phosphorylate kemptide

(Invitrogen Kit, Cat.#V5340). Phosphorylated substrate migrates towards the anode (bottom), while non-phosphorylated substrate migrates towards the cathode (top).

Table 1. Oligonucleotides used in this study

Primer	Description	Sequence (5'-3')
101	<i>pkaC2</i> LA F	GTTTGCAGTTTTCACCCCGC
102	<i>pkaC2</i> LA R	GTCGTGACTGGGAAAACCCTGGCGTCGAGCACAGCGGGGAATG
103	<i>pkaC2</i> RA F	TCCTGTGTGAAATTGTTATCCGCTGCTCCTGCCACGACGTTACG
104	<i>pkaC2</i> RA R	AGTTTCAGTCCTGGTGTTGG
398	M13F-PHL F	CGCCAGGGTTTTCCCAGTCACGACAAGTGGAAAGGCTGGTGTGC
408	PHL R	TGCTCGCCGATCTCGGTCAT
410	LEO F	GACAAGGTCGTTGCGTCAGTC
409	LEO R	AGCGGATAACAATTTCACACAGGATTAAAGCCTTCGAGCGTCC
109	<i>pkaC2</i> probe F	CTTTGTGAACTTGCTTTGCG
110	pkaC2 probe R	TTCCATTTCGGATGCGTGC
105	<i>pkaC1</i> LA F	ATGAAGTCACCAAGCTAGAGG
106	<i>pkaC1</i> LA R	GTCGTGACTGGGAAAACCCTGGCGGAGGAAACGAGAGTTAAAAG
107	<i>pkaC1</i> RA F	TCCTGTGTGAAATTGTTATCCGCTCGACATTTGATAGAGCAATG
108	<i>pkaC1</i> RA R	TCCTCCGCCGAACACGTG
395	HY R	CTCCATACAAGCCAACCACGG
396	YG F	CGTTGCAAGACCTGCCTGAA
399	YG R	AGCGGATAACAATTTCACACAGGATCGCGTGGAGCCAAGAGCGG
201	PgpdA-pkaC2 LA F	CTGTTTTCTTATCCCTTTCG
202	PgpdA-pkaC2 LA R	GCACACCAGCCTTTCCACTTGCAAGCACATCATTGATTCG
203	gpdA promoter F	CGAATCAATGATGTGCTTGCAAGTGGAAAGGCTGGTGTGC
204	gpdA promoter R	CCTTTCCTGTAGCCATTGGGAACGGCACTGGTCAACTTGG
205	PgpdA-pkaC2 RA F	CCAAGTTGACCAGTGCCGTTCCCAATGGCTACAGGAAAGG
206	PgpdA-pkaC2 RA R	GAATCACTGCCTTAGAAATC
501	<i>gpdA</i> qPCR F	AGATCAAGCAGGCCATCAAG
502	gpdA qPCR R	GTAACCCCACTCGTTGTCGT
503	<i>pdbA</i> qPCR F	ATCCTGGGTGAAGAGGTTGC
504	<i>pdbA</i> qPCR R	GAAGGTCATAAACTCGCAGATAGG
505	<i>pkaC2</i> qPCR F	TGAGGTCATCCACAACAGCG
506	<i>pkaC2</i> qPCR R	CTCACTCGGATTGGTCTTGC
507	gpdA RT-PCR F	TCATCAACGACAAGTTCGGC
508	gpdA RT-PCR R	ACAACACGGCGAGAGTAACC
509	pkaC2 RT-PCR F	AACAGAGCCTATATATGCTG
510	<i>pkaC2</i> RT-PCR R	TGGATGACCTCAGGAGCTAG
575	ags3 RT-PCR F	CTTTGGAAGATGGTCCTGGT
576	ags3 RT-PCR R	ACAAATCTATCGGCCTCCAC

В

Trehalose Assay

SDS

ags3 expression

