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Supplemental Methods
DASP algorithm to utilize functional site profiles to search sequence databases

The steps for utilizing a functional site profile to search protein sequences are
summarized in Figure S2 and are described in detail elsewhere *. Briefly, profile motifs are
identified by traversing the functional site profile from left to right searching for continuous
fragments of at least three residues in length that align. These fragments correspond to the
fragments identified from the protein structures (indicated by alternating upper and lower case
letters in each signature in Figure 2B). A motif is identified at i if the majority of the sequences
in the profile have a fragment or a portion of a fragment between i and j, with j being the position
in the profile where the fragment ends. Not all sequences contain the motif fragment; thus not all
sequences may be included in every motif identified in the profile. Once all motifs in the profile
have been identified, individual multiple sequence alignments (MSAs) are created for each motif.
A position specific scoring matrix (PSSM) for each motif is created by iterating over the
columns of the MSA and tallying the observed counts (the number of occurrences of each
residue) and the pseudocounts (based on the overall frequency of the amino acid in the
background database) in each column 2. Counts for each residue in a motif are summed and

normalized by the sum of the number of columns in the MSA and the pseudocount weight.

The PSSM for each motif is used to search all sequences of the database using a sliding
window procedure 2. Once a motif from the profile is matched to a position in a protein sequence,
a score, S;, for the segment of sequence s beginning at position i is obtained by summing the
corresponding entries from the PSSM, as previously described *:

n
Fym st{fﬂ—l};

where s(x) is the letter at position x in sequence s, M, is the score for residue a at position x in
the PSSM, and j is the current column of the PSSM. A p-value is then obtained for the score
representing the probability of finding a match as good as the observed match in a random spot

of a random sequence.

The p-values for all motif matches in a given sequence are combined using QFAST*.

Briefly, the p-value for each motif is normalized for the length of the motif, and the normalized



p-values from all the motifs are multiplied together to obtain the final product. The p-value for
the product represents the statistical significance for the match of each sequence to the entire

profile.

Calculation of mean and standard deviation entropy values for residue conservation

The entropy values were calculated as described previously ° for every residue position
across a sequence alignment of 204 peroxiredoxins from all subfamilies. The 204 proteins were
selected from PSI-BLAST searches (cutoff score e%) using query sequences H. sapiens Prx5
(1hd2), H. sapiens Prx6 (1prx), S. typhimurium AhpC (1yep), H. influenza Tpx (1q98), and S.
pneumoniae Tpx (1psq). Entropy values were not calculated for any position in the alignment
where less than 10 of the sequences had a residue at that position. For all positions in these 204
proteins, the mean entropy value was 1.158, and the standard deviation was 0.548. We thus
considered as conserved, those residues with an entropy value lower than 0.61 (the mean minus
one standard deviation). Entropy values for each Prx subfamily were calculated using all of the
sequences identified by DASP after removing sequences with no Prx motif or hit with a more

significant p-value in another subfamily search (Table I, Total after edits).

Supplemental Results
Selection criteria for Prx key residues

Functional site signatures were created for all Prxs with structural coordinates available
in the RCSB database as of Jan 2008 ° (Table SI). The first step in creation of signatures is the
identification of key residues—residues that are known to be important in the activity of a
functional site. When the Cp was used as the only key residue to extract the functional site
signature, the protein fragments identified were short and the functional site signatures did not
align well. To expand the signatures, other residues were assessed based upon their conservation
across known Prxs, including the essentially conserved residues Pro39, Thr43, and Arg119
(numbering for S. typhimurium AhpC, Figure 1). Arg119 was present in all of the signatures and
inclusion of Arg119 as a key residue did not add to the functional site signatures because the

surrounding sequence was not well conserved. The Cg was also not used as a key residue



because it is not present in all Prxs, is found in different locations in various subfamilies (Figure
S1), and is often not located close to the Cp in the fully folded structures. Initial alignments
indicated that all of the Prx signatures contained either a Trp or a Phe residue that was present in
the same location across all of the structures and aligned sequences (Trp81 in Salmonella
typhimurium AhpC), suggesting that it might be important for the mechanism of this family.
Including Trp81 as a key residue in the DASP analysis provided a sequence fragment that was
long enough to properly align the conserved Trp, which was determined to be important for
subsequent DASP searches of the sequence database. Therefore, final functional site signatures
were obtained using the residues equivalent to Cp (Cys46), Pro39, Thr43, and Trp81 as the key

residues.

Selection of DASP p-value cutoff

To determine the appropriate p-value cutoffs for the GenBank(nr) search, functional site
profiles were created for each Prx subfamily. DASP was used to search the RCSB PDB database
because we know the correct subfamily assignment for all the structurally characterized Prxs,
Table SI). At p-values more significant than 10, all hits returned were peroxiredoxins. At p-
values of 10, other proteins that did not include the conserved PxxxTxxC motif were starting to
be returned, and at 107, the vast majority of the results could not be considered peroxiredoxins.
In the case of the searches with Prx5 and Tpx, only members of the Prx5 and Tpx class,
respectively were returned, even at p-values as low as 10°°. Searches of the Prx6, AhpC/Prx1, or
BCP/PrxQ subfamilies were able to pull up members of the other two classes at p-values
between 10°-10°%, With a p-value cutoff of 108, the searches were completely specific for the

appropriate subfamily and this value was used for further analysis.

Profile scores can be used to identify Prx subfamilies

A score is calculated for each profile based on the level of conservation in the profile as
described previously &, Work by Cammer et al indicated that functional site profile scores ranged
from 0.04 - 1.0 for 193 known protein families ® . Higher profile scores are correlated with more
similarity at the functional site. The Prx5 profile (0.25) exhibits significant scores, indicating

clear relationships between these proteins. The Tpx profile score (0.14) indicates significant



diversity within the Tpx proteins of known structure, but clustering shows a clear separation of
this subfamily from the others (Figure 2A). A more significant profile score was obtained for the
Prx6 profile (0.31) compared to the score for a combined Prx6, AhpC, and Prx1 profile (-0.04),
indicating that the Prx6 subfamily is distinct from AhpC/Prx1 based on information at the
molecular functional site. This analysis suggests that AhpC and Prx1 might also be
distinguished, as scores for AhpC (0.32) and Prx1 (0.16) subfamilies individually are much more
significant than scores for the combined AhpC/Prx1 subfamily (0.06). The original BCP/PrxQ
profile score (0.18) was low, suggesting that the structural diversity of this subfamily is
insufficient to produce a robust profile. It is also possible to use profile scores to determine the
family/subfamily assignment of a protein; a significant decrease in the profile score upon the
addition of a signature suggests that the protein has been misassigned 8. Addition of the AhpE or
BCP functional site signatures to any of the other Prx subfamilies dramatically decreased the
score for the resulting profile, indicating that neither BCP nor AhpE were sufficiently similar to
be considered as a member of another subfamily.

Engineered profiles can be used to obtain a more specific profile for subfamilies lacking
sufficient structural representatives: the BCP/PrxQ example.

The PSSM method utilized by DASP is limited by the diversity of the family or
subfamily members used to generate the PSSM as illustrated by analysis of the BCP/PrxQ
subfamily. At the time of the original analysis, only two distinct sequences were available for
structurally characterized members of the BCP/PrxQ subfamily (Aeropyrum pernix BCP, 2a4v
and Saccharomyces cerevisiae BCP, 2cx4), and the resulting profile was of limited diversity.
Clustering of all the functional site signatures identified by the DASP search indicated that these
two structures are found in two of the smaller groups identified within this subfamily and are not
representative of the subfamily as a whole (Figure S3A). The largest groups (labeled groups 1
and 2 in Figure S3A) did not have a representative in the profile; however, the biochemically
characterized subfamily members including Escherichia coli BCP ° and Populus tremula x
Populus tremuloides PrxQ *° are members of these larger groups. Thus, an engineered profile

was developed (as described in Methods) for the BCP/PrxQ subfamily using these biochemically



characterized subfamily members to better represent subfamily diversity and to improve
sequence searching.

The results of searching GenBank(nr) with both profiles are shown in Figure S3D and E.
The original (less diverse) profile (Figure S3B) identified 810 putative subfamily members,
while the engineered (more diverse) profile (Figure S3C) identified 1130 putative subfamily
members. We cannot distinguish how much of the increase in the number of putative BCP/PrxQ
sequences is due to the deposition of more sequences in the GenBank(nr) database (Jan 2008 and
Jan 2009 for the original and engineered profiles, respectively); however, other data also suggest
that the engineered profile is more robust and diverse. First, the number of identified sequences
with an extremely significant p-value (<10®) is lower in the original profile than the engineered
(13% and 38%, respectively; Figure S3 D and E) and the distribution of the remaining scores in
the engineered search is more consistent with those of other subfamily searches. Second, the
number of sequences identified by more than one subfamily search are fewer in the engineered
(10, 0.88%) than the original (25, 3.1%) BCP/PrxQ profile. These results show that the
composition of the original, structure-based profile affects the specificity and coverage of the
sequences identified by the profile. The creation of engineered profiles can therefore be used to
increase the power of the sequence searching technique for subfamilies that have few structural

representatives.

DASP identifies three sites of conservation that may be important for Prx catalysis.

Other than the PXXXT/SXXCp motif * and Arg119 ™™ our analysis identified only
three residues that are highly conserved across all Prx functional site signatures (Figure 2B,
highlighted in black). The location of both of these residues in representative Prxs are shown in
Figure 4 (residues in pink). The first, the Trp noted earlier during optimization of the signatures,
is Trp81 in S. typhimurium AhpC. This residue is replaced with a Phe in some Prxs, particularly
in the BCP/PrxQ and Tpx subfamilies, where 72% and 98% of the subfamily members contain a
Phe, respectively. It has previously been noted that Trp81 is conserved in the AhpC/Prx1
subfamily, and mutation of this residue has been shown to dramatically decrease the activity of
some peroxiredoxins. For example, Trp81 has been mutated to Leu in a barley 2-Cys

peroxiredoxin ** and to His and Asp in Crithidia fasciculata tryparedoxin peroxidase * (both



members of the AhpC/Prx1 subfamily). In both cases, this mutation significantly decreased the
activity of the protein (and stability in the case of the His and Asp mutations).

The second residue, Ser71 (AhpC, 1n8j numbering), was observed to be stringently
conserved across all Prx structures and most of the signatures (Figure 3). This residue is located
between the active site and the A-type interface and is part of a hydrogen bond network with
other conserved residues (Figure 4, residues in orange; Figure 3, residues marked with #).
Although Ser71 (Figure 4, pink) is conserved across all of the subfamilies except Prx5, the rest
of the residues involved in this network differ in each subfamily. The role of this residue has not
been explored experimentally.

The third residue, Glu49 (numbering from S. typhimurium AhpC, 1n8j), is conserved
across the AhpC/Prx1 and Prx6 (Glu50 in Homo sapiens Prx6, 1prx) subfamilies (Figure 3B and
C) and hydrogen bonds to Arg119 in some of the structures (Figure 4A and B, green). The Glu
has been identified as characteristic of the “type 4” Prx subfamily which includes our AhpC/Prx1
and Prx6 subfamilies '°. Although this Glu is not conserved in the other Prx subfamilies except
AhpE, all of the subfamilies contain a residue at this position that is capable of hydrogen
bonding to Arg119. In the BCP/PrxQ subfamily, this position (Glu52 in A. pernix BCP, 2cx4) is
occupied by either a Glu (66%) or a Gln (33.5%). Members of the Tpx subfamily contain a Gln
(31%), a Ser (58%) or a Glu (9.5%). In members of the Prx5 subfamily, there is a single residue
insertion in this portion of the structure, described as an a-aneurism *’; a conserved His is located
at the same relative position in the H. sapiens Prx5 structure (1hd2, His51, Figure 4D, green) and
has similar hydrogen bonding patterns as Glu49 in S. typhimurium AhpC (Figure 4B). This His is
located one residue after the conserved Glu in sequence alignments (Figure S1) and in the
signatures (Figure 2B). These observations suggest that hydrogen bonding is a key feature that
this residue plays in all subfamilies and that variations in its pK, might be important in the Prx
mechanism in some subfamilies. This residue has also been identified in computational
electrostatic studies as being a residue that interacts strongly with Cp *®. Recent analysis of Prx
active sites with bound substrate analogues revealed that this residue hydrogen bonds to the
stringently conserved Arg and that the residue identity is at least partially responsible for

determining the conformation of the conserved Arg **.
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Supplemental Figure Legends

Figure S1. Multiple sequence alignment of representative Prxs shows alignment of some
key residues, and the inconsistent location of Cr. Key residues used to create the functional
site profiles are starred and the location of residues found in the resulting functional site profiles
are labeled with the blue rectangles. The subfamily assignments for each Prx are in parentheses
after the protein name. The location of the resolving cysteine (Cg) for a subfamily is highlighted
in green for typical 2-Cys (Salmonella typhimurium AhpC, Trypanosoma cruzi tryparedoxin
peroxidase), atypical 2-Cys (Homo sapiens Prx5, Mycobacterium tuberculosis Tpx, Aeropyrum
pernix BCP), and 1-Cys (H. sapiens Prx6, M. tuberculosis AhpE) Prxs. Residues conserved
across the entire alignment are highlighted in red and residues identified as conserved in this
study in each subfamily are highlighted in yellow. Sequences were aligned using T-coffee [80]

and the figure was created using ESPript [49].

Figure S2. Summary of the DASP process for searching sequence databases. Functional site
profiles (also called active site profiles) are generated as described in detail elsewhere [7], and all
motifs (of at least 3 residues in length) for the profile are identified. For each motif, a multiple
sequence alignment is created and a position specific scoring matrix (PSSM) is calculated [2].
For each sequence in the database, the PSSM for each motif is used to find the best match, and a
p-value score is calculated for each PSSM (representing the probability of finding a similar
match in a random sequence) [3]. The p-values from each motif are normalized and then
combined using QFAST [4] to give a final p-value, which represents the overall profile to
sequence score (more details of this process are described in Supplemental Methods and
published elsewhere [1]).

Figure S3. The first two structurally characterized BCP/PrxQ subfamily members are not
representative of the entire subfamily and engineered signatures can be used to create a

more robust and specific BCP/PrxQ profile. (A) The functional site signatures obtained from
the Genbank(nr) search for the BCP/PrxQ subfamily members using the engineered profile were

clustered in Matlab, a cluster cutoff was identified (blue line in the dendrogram) and the



subfamily was subdivided into eight groups. Structural representatives and biochemically
characterized BCP/PrxQ proteins are listed to the right of the group to which they belong. The
GenBank(nr) database was searched using (B) the original functional site profile developed for
Aeropyrum pernix (2cx4, 2cx3) and Saccharomyces cerevisiae (2a4v) BCP or (C) the engineered
profile reflecting the functional site sequences of A. pernix BCP, S. cerevisiae BCP, Escherichia
coli BCP, Helicobacter pylori BCP, and Poplar denticolas PrxQ using a p-value cutoff of 10® as
described in Material and Methods. The results from the (D) original BCP/PrxQ search and the
(E) engineered BCP/Prx search were analyzed to determine whether sequences were specific for
that subfamily (dark gray bars), found in the AhpC/Prx1 subfamily (white bars) or Prx6
subfamily (hashed bars) with a more significant p-value, or contained no Prx motif (black bars).
The p-value distribution for sequences returned from GenBank(nr) using the engineered profile
(shown in E) is more representative of the results from other Prx subfamilies than the p-value

distribution from a search using the original BCP/PrxQ functional site profile (shown in D).



Table SI. Prx structures and residues used to create functional site signatures

redox
PDB  Name Species Chain Key Residues state Ref
AhpC/Prx1 (customarily Typical 2-cys Prxs with both A & B interfaces)
le2y' tryparedoxin peroxidase  Crithidia fasciculata B P45, T49, C52, W87 SH %
1gmv'  Prx2 Homo sapiens A P44, T48, C51, W86 so =
192"  Prxl Rattus norvegicus A P45, T49, C52, W87 ss %
luul*  tryparedoxin peroxidase  Trypanosoma cruzi A P45, T49, C52, W87 SH =
1zof*  AhpC Helicobacter pylori A P42, T46,C49, W84 S5
1zye!  Prx3 Bos taurus A P40, T44, CA7, W82 SH #
2h01%? thiol peroxidase 1 Plasmodium yoelli A P43, T47, C50, W85 SH
2c0d*  Mitochondrial 2-Cys Prx  Plasmodium falciparum A P60, T64, C67, W102 S-S %
2pn8*? Prx4 Homo sapiens A P124,T121, C117,W159 SH
2rit  Prx1 (Complex with Srx) Homo sapiens A P45, T49, C52, W87 SH %
2h66*  2-Cys Plasmodium vivax B P43, T47,C50,W85  SH %
2i81%%  Prx5 Plasmodium vivax C P43, T47,C50, W85  SH
lyep® AhpC Salmonella typhimurium A P39, T43, C46, W81  S-§ 2%
1n8j® AhpC Salmonella typhimurium A P39, T43, C46S, W81  Ser ™
1we0® AhpC Amphibacillus xylanus A P40, T44, C47,W82 S-S *#
2bmx®*  AhpC Mycobacterium tuberculosis A P54, T58,C61, W96 S-S %
Prx6 (Customarily 1-Cys Prxs with a B-type interface)
lprx  Prx6 Homo sapiens A P40, T44,C47,W82 SOH *
Ixcc  1-Cys Prx Plasmodium yoelli A P40, T44, C47, W82 SH *
1x0r  thioredoxin peroxidase  Aeropyrum pernix A P43, T47, C50, W85 Sé—|_ S& %
2cv4  thioredoxin peroxidase  Aeropyrum pernix A P43, T47,C50,W85  SO; %
Prx5 (Includes both 1-Cys and atypical 2-Cys Prxs that have an A-type interface)
1hd2  Prx5 Homo sapiens A P40, T44,C47, W84  SH ¥
lurm  Prx5 Homo sapiens A P40, T44,C47S, W84  Ser
1tp9  PrxD Populus tremula A P44, T48, C51, W88 SH %
1nm3  PrxV Haemophilus influenzae A P42, T46, C49, W86 SH %
1xiy ~ pfAOP Plasmodium falciparum A P52, T56, C59, W97  SO; Y/
Tpx (customarily atypical 2-Cys Prxs with an A-type interface)
1psq®  Thiol peroxidase Streptococcus pneumoniae A P51, T55, C58, W91 SH
1098° thiol peroxidase Haemophilus influenzae A P52, T56, C59, W92 S-S
1gxh  thiol peroxidase Escherichia coli A P54, T58,C61, W94 S5 *



Ixvqg  Tpx Mycobacterium tuberculosis A P53, T57, C60, W92
1ly25  Tpx Mycobacterium tuberculosis A P53, T57, C60S, W92
2yzh®  Thiol peroxidase Aquifex aeolicus A P54, T58, C61, W94

BCP/PrxQ (Includes both atypical 2-Cys and 1-Cys Prxs that are monomeric)
P100, T104, C107S,

2a4v BCP Saccharomyces cerevisiae A W141

2cx4?>  BCP Aeropyrum pernix D P42, T46, C49, W84
AhpE

Ixvw  AhpE Mycobacterium tuberculosis A P38, T42, C45, W80
Ixxu  AhpE Mycobacterium tuberculosis A P38, T42, C45, W80

'Used to create Prx1 profile
Not published. Coordinates available in RCSB Protein Database

3Used to create AhpC profile
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Table SlIII. Hits with no Prx motif
Accession Name Species p-value Missing Residues
number
BCP/PrxQ
(engineered)
125973977 | Redoxin Clostridium thermocellum ATCC | 2.24E-13 P replaced with other
27405 residue
196253450 | Alkyl hydroperoxide reductase/ Thiol Clostridium thermocellum DSM 1.90E-13 P replaced with other
specific antioxidant 4150 residue
82702925 | Alkyl hydroperoxide reductase/ Thiol Nitrosospira multiformis ATCC 1.42E-14 P replaced with other
specific antioxidant 25196 residue
167755398 | hypothetical protein CLORAM_00912 | Clostridium ramosum DSM 1402 | 0.00E+00 | P replaced with other
residue
AhpC/Prx1
46204795 | Peroxiredoxin Magnetospirillum 7.97E-22 T replaced with other
magnetotacticum MS-1 residue
47193078 | unnamed protein product Tetraodon nigroviridis 1.73E-13 P fragment missing
118094466 | similar to natural Killer cell enhancing Gallus gallus 3.23E-11 P fragment missing
factor isoform 2
12718511 | peroxiredoxin Platichthys flesus 9.14E-15 Cp fragment missing
158593205 | Thioredoxin peroxidase 1, putative Brugia malayi 1.09E-12 P replaced with other
residue
116500579 | hypothetical protein CC1G_04730 Coprinopsis cinerea 5.38E-10 Cp fragment missing
okayama7#130
110602165 | Alkyl hydroperoxide reductase/ Thiol Geobacter sp. FRC-32 2.15E-11 Cp fragment missing
specific antioxidant
114688004 | thioredoxin peroxidase Pan troglodytes 1.20E-15 P replaced with other
residue
148697774 | mCG116719 Mus musculus 2.32E-16 P replaced with other
residue
73946795 | PREDICTED: similar to Peroxiredoxin | Canis familiaris 7.97E-11 P replaced with other
2 residue
147919347 | putative 2-cysteine peroxiredoxin uncultured methanogenic 7.09E-09 P replaced with other
archaeon RC-I residue
Prx6
1710079 | REHY_TORRU Probable 1-Cys Syntrichia ruralis 6.99E-12 T replaced with other
peroxiredoxin (Rehydrin) residue
119871684 | alkyl hydroperoxide reductase/ Thiol Pyrobaculum islandicum DSM 9.17E-15 T replaced with other
specific antioxidant 4184 residue
163718158 | alkyl hydroperoxide reductase/ Thiol Thermoproteus neutrophilus 4.19E-14 T replaced with other
specific antioxidant V24Sta residue
119617928 | hCG2041492 Homo sapiens 1.93E-16 T replaced with other
residue
Prx5
2462742 | Unknown protein Arabidopsis thaliana 3.70E-10 Cp P T replaced with
other residues
149391021 | peroxiredoxin 5 Oryza sativa (indica cultivar- 2.33E-10 truncationupto T
group)
56182370 | putative thioredoxin peroxidase 1 Saccharum officinarum 1.28E-11 Cp fragment missing
114638297 | similar to antioxidant enzyme B166 Pan troglodytes 8.10E-13 Cp fragment missing
isoform 4
115745775 | similar to peroxiredoxin V protein Strongylocentrotus purpuratus 4.55E-11 Cp fragment missing
Tpx
1103833 | thiol peroxidase Escherichia coli 0.00E+00 | Cp replaced with W




Table SIV. Proteins Assigned by DASP to two Prx subfamilies

GenBank p-value p-value p-value p-value
Accession Number Prx6 AhpE AhpC/Prx1 BCP/PrxQ
110799231 8.20E-09 8.47E-16
19357674 2.77TE-09 0
125979671 8.88E-09 0
149179118 1.94E-09 0
16331338 1.54E-09 0
17864676 8.40E-09 0
18309764 7.52E-09 4.01E-16
68551025 7.06E-10 0
91090021 8.81E-09 3.66E-18
91203633 7.33E-09 5.71E-15
149278593 2.92E-09 1.07E-09
149918375 2.93E-09 1.31E-09
150020653 8.53E-09 8.53E-09
123437746 3.84E-09 5.99E-21
123449270 9.77E-10 2.73E-23
123459140 1.83E-09 7.16E-24
123974738 1.84E-09 4.95E-23
146304289 0 8.30E-09
150400760 0 3.71E-09
156934873 5.00E-09 0
163781576 3.83E-09 0
50083688 9.68E-10 0
50085223 2.76E-09 0
78223919 1.37E-10 0
90416750 3.67E-09 0
3024730 0 3.61E-10
13472213 0 2.01E-09
14286173 0 9.37E-09
15678187 0 2.71E-09
10281259 0 3.85E-10
13186337 6.91E-09  3.44E-09
163789074 0  5.04E-09
193627310 0 4.10E-09

Scores highlighted in red were the least significant for a given protein.
Scores shown in black indicate the subfamily assignment for a given

protein.

Results from the final BCP/PrxQ profile are shown; the original
BCP/PrxQ search identified the same 11 sequences as crosshits with
scores from 10° - 10°°.




Table SV. Prx subfamily members

Table SV can be downloaded separately as an excel spreadsheet



Table SVI. Conserved residues in each Prx subfamily®

Conserved Conserved % total % conserved
residues in total residues in sequence residues in
sequence functional site conserved functional site
profile profile

BCP/PrxQ 23 12 9% 52%
AhpC/Prx1 33 22 12% 67%
Prx6 42 20 15% 48%
Prx5 46 16 12% 35%
Tpx 39 16 20% 41%

¥The full sequences of all proteins in each subfamily were aligned using ClustalW and the
entropy values were calculated for every position that contained at least 20 sequences.
Residues were considered conserved with an entropy value less than the mean minus one
standard deviation (0.61).
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Figure S3

A Dendrogram for BCP subfamily search
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