Supporting Information

for

New ultra-high affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: Thermodynamic analysis and evaluation of M2 affinity calculations

Sarvin Moghaddam, Cheng Yang, Mikhail Rekharsky, Young Ho Ko, Kimoon Kim*, Yoshihisa Inoue*, Michael K. Gilson*

Table of Contents

Full form of Ref 10	S1
Experimental section	S2
Scheme S1. Synthetic route of bicyclo[2.2.2]octane derivatives	S2
Table S1. Experimental Binding Constant, Standard Free Energy, Enthalpy, and	
Entropy Changes for Complexation of Ferrocene, Bicycloctane, and	
Adamantane Guests with Cucurbit[7]uril	S3
Figure S1. ¹ H NMR spectrum of BCO-1	S4
Figure S2. ¹³ C NMR spectrum of BCO-1	S5
Figure S3. ¹ H NMR spectrum of BCO-2	S6
Figure S4. ¹³ C NMR spectrum of BCO-2	S7
Figure S5. ¹ H- ¹ H COSY spectrum of BCO-2	
Figure S6. ¹ H NMR spectrum of BCO-3	S9
Figure S7. ¹ H NMR spectrum of B2	S10
Figure S8. ¹³ C NMR spectrum of B2	S11
Figure S9. ¹ H NMR spectrum of BCO-4	S12
Figure S10. ¹³ C NMR spectrum of BCO-4	S13
Figure S11. ¹ H NMR spectrum of B5	S14
Figure S12. ¹ H NMR spectrum of B11	S15
Figure S13. ¹³ C NMR spectrum of B11	S16
Figure S14. HR Mass spectrum of B5	S17
Figure S15. HR Mass spectrum of B11	S18
Figure 16. Calorimetric titration of A2 with CB[7]	S19
Figure 17. Calorimetric titration of B2 with CB[7]	S20
Figure 18. Calorimetric titration of B11 with CB[7]	S21
References	S22

Ref 10: MacKerell, A.; Bashford, D.; Bellott, M.; Dunbrack, R.; Evanseck, J.; Field, M.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.; Prodhom, B.; Reiher, W.; Roux, B.; Schlenkrich, M.; Smith, J.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. *J. Phys. Chem. B.* **1998**, *102*, 3586-3616.

Experimental section

Bicyclo[2.2.2]octane derivatives were synthesized as illustrated in Scheme S1, according to the procedures reported in the references S1-S3.

Scheme S1. Synthetic route for bicyclo[2.2.2]octane derivatives.

guest ^{charge}	K/M^{-1}	ΔG°	ΔH°	$T\Delta S^{\circ}$
		/kcal mol ⁻¹	/kcal mol ⁻¹	/kcal mol ⁻¹
ferrocenylCH ₂ OH (F1)	$(3.3 \pm 0.5) \times 10^9$	$\textbf{-13.0}\pm0.1$	-21.5 ± 0.5	-8.6 ± 0.5
ferroceneCH ₂ N ⁺ HMe ₂ (F2)	$(2.4 \pm 0.8) \times 10^{12}$	-16.9 ± 0.2	-21.0 ± 0.5	-4.1 ± 0.5
$ferroceneCH_2N^+Me_3$ (F3)	$(4.1 \pm 1.0) \times 10^{12}$	-17.2 ± 0.2	-21.5 ± 0.2	-4.3 ± 0.5
1,1'-bis(CH ₂ NMe ₃) ₂ ferrocene ²⁺ (F6)	$(3.2 \pm 1.0) \times 10^{15}$	-21.1 ± 0.2	-21.5 ± 0.2	$\textbf{-0.5}\pm0.5$
1,4-bis(hydroxylmethyl)bicyclo[2.2.2]octane ⁰ (B2)	$(6.1 \pm 0.5) \times 10^9$	-13.4 ± 0.1	-15.8 ± 0.2	-2.4 ± 0.2
1,4-bis(aminomethyl)bicyclo[2.2.2]octane ²⁺ (B5)	$(2.0 \pm 0.5) \times 10^{14}$	$\textbf{-19.5}\pm0.2$	$\textbf{-15.6} \pm 0.4$	3.9 ± 0.5
1,4-bis(Me ₂ NCH ₂ CH ₂ CH ₂ NCH ₂) ₂ bicyclo[2.2.2]octane ⁴⁺ (B11)	$(1.2 \pm 0.5) \times 10^{15}$	-20.6 ± 0.4	$\textbf{-16.3}\pm0.4$	4.3 ± 0.5
1-adamantanol ⁰ (A1)	$(2.3 \pm 0.8) \times 10^{10}$	-14.1 ± 0.2	-19.0 ± 0.4	-4.9 ± 0.4
1-adamantylamine ¹⁺ (A2)	$(1.7\pm0.8) imes10^{14}$	$\textbf{-19.4} \pm 0.1$	$\textbf{-19.3}\pm0.4$	0.1 ± 0.5
1-aminomethyladamantane ¹⁺ (A3)	$9 \times 10^{14 b}$	-20.3 ^b	$\textbf{-21.9} \pm 0.4$	-1.7
1-(2-aminoethylamino)adamantane ²⁺ (A4)	$5 \times 10^{15 b}$	-21.5 ^b	-20.1 ± 0.4	1.4
2-adamantylamine ^{$1+$} (A5)	$(1.0 \pm 0.3) \times 10^{14}$	-19.1 ± 0.2	-19.5 ± 0.4	-0.4 ± 0.5

Table S1. Experimental Complex Stability Constant (*K*), Standard Free Energy (ΔG°), Enthalpy (ΔH°), and Entropy Changes ($T\Delta S^{\circ}$) for Complexation of Various Ferrocene, Bicyclo[2.2.2]octane, and Adamantane Guests with Cucurbit[7]uril in H₂O at *T* = 298.15 K^{*a*}

^{*a*} Determined in pure water at 298.15 K by isothermal titration calorimetry (ITC-VT, Microcal), unless stated otherwise. ^{*b*} Binding constant was determined by NMR in the presence of competitor, while the enthalpic change was determined by microcalorimetry.

Figure S1. ¹H NMR spectrum of BCO-1 in DMSO- d_6 measured at 20 °C.

Figure S2. ¹³C NMR spectrum of BCO-1 in DMSO- d_6 measured at 20 °C.

Figure S3. ¹H NMR spectrum of BCO-2 measured in DMSO- d_6 at 20 °C.

Figure S4. ¹³C NMR spectrum of BCO-2 measured in DMSO- d_6 at 20 °C.

Figure S5. ¹H-¹H COSY spectrum of BCO-2 measured in DMSO- d_6 at 20 °C.

Figure S6. ¹H NMR spectrum of BCO-3 measured in CDCl₃ at 20 °C.

Figure S7. ¹H NMR spectrum of **B2** measured in CDCl₃ at 20 °C.

Figure S8. ¹³C NMR spectrum of **B2** measured in DMSO- d_6 at 20 °C.

Figure S9. ¹H NMR spectrum of BCO-4 measured in D_2O at 20 °C.

Figure S10. ¹³C NMR spectrum of BCO-4 measured in D_2O at 20 °C.

Figure S12. ¹H NMR spectrum of B11 measured in D₂O at 20 °C with MeOH added as an internal standard.

Figure S13. ¹³C NMR spectrum of B11 measured in D_2O at 20 °C with MeOH as an internal standard.

Figure S14. High-Resolution Mass Spectrum of B5.

Figure S15. High-Resolution Mass Spectrum of B11.

Figure 16. Competition ITC experiment on complexation of **A2** with CB[7] in water at 298.15 K in the presence of 1,6-hexanediamine (48.8 mM) as competitor.

Figure 17. Competition ITC experiment on complexation of **B2** with CB[7] in water at 298.15 K in the presence of L-phenylalanine as competitor.

Figure 18. Competition ITC experiment on complexation of **B11** with CB[7] in water at 298.15 K in the presence of triethylenetetramine as competitor

References

- (S1) Roberts, J. D.; Moreland, W. T.; Frazer, W. J. Org. Chem. 1953, 18, 637.
- (S2) Kumar, K.; Wang, S. S.; Sukenik, C. N. J. Org. Chem. 1984, 49, 665.
- (S3) Kauer, J. C.; Benson, R. E.; Parshall, G. W. J. Org. Chem., 1965, 30, 1431.
- (S4) Cannon, J. G.; Yang, K. W.; Rodriguez, M.; Buckley, J. P. J. Pharm. Sci. 1971, 1534.