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Supplementary Methods 

 

Construction of vUL35RFP1D1. vUL35RFP1D1 was obtained by releasing HSV-1 sequences 
including the UL35 gene from Cos14 (Cunningham & Davison, 1993) as a PacI fragment and 
ligated into PacI-digested CC6FOS (provided by L. Feldman, University of California Los Angeles, 
CA, USA) to produce CC6FOS14. To remove the loxP site from the CC6FOS vector, it was replaced 
by a neomycin cassette flanked by FRT recombination sequences by Red/ET recombination by 
using a Counter Selection BAC Modification kit (Genebridges). The neo sequences were removed 
by Flp recombinase to generate FOS14ΔLOX. Using the same approach, the neomycin cassette 
flanked with loxP and variant 2272 recombination sequences (Siegel et al., 2001) was introduced at 
the N terminus of UL35 to generate Fos14ΔLOXUL35Neo. This was replaced with the pDsRed 
Monomer sequence (BD Bioscience) by Cre–lox recombination to position the RFP ORF in frame 
with and upstream of the UL35 ORF. The resulting fosmid was transfected into BHK cells together 
with WT HSV-1 DNA. Progeny plaques exhibiting red fluorescence were selected, purified through 
four cycles of plaque picking, grown to high titre and designated vUL35RFP1D1. 

 

Construction of vgD-gE-VP26RFP. vgD-gE-VP26RFP was obtained by co-infecting the gD-
expressing cell line VD60 with vUL35RFP1D1 and the gD, gE virus vRR1097-gEβ (Farnsworth et 
al., 2003). The growth medium was harvested after 24 h and the progeny were serially diluted on 
VD60 cells. Plaques positive for RFP and also for GFP and β-galactosidase [indicating the deletion 
or disruption of the US6 and US8 ORFs, respectively (Farnsworth et al., 2003)] were isolated and 
tested for their ability to grow on VD60 and Vero cells. An isolate unable to grow on Vero cells was 
selected. After three further rounds of purification on VD60 cells, the virus was grown to high titre. 
An isolate showing RFP and GFP fluorescence, but no β-galactosidase signal, was also selected and 
termed vgD-VP26RFP. 

 

Antibodies. The following primary antibodies were used: anti-GFP (mouse monoclonal GSN24; 
Sigma), anti-VP26 [1201, raised in rabbit against purified VP26), anti-UL37 (M780, rabbit 
polyclonal provided by F. Jenkins, University of Pittsburgh, PA, USA (Shelton et al., 1994)], anti-
pUL36 [mouse monoclonal #E12-E3; provided by P. O’Hare, Marie Curie Research Institute, Oxted, 
Surrey, UK (Abaitua & O'Hare, 2008)], anti-VP5 [mAbDM165 (McClelland et al., 2002)], anti-
TGN46 (rabbit polyclonal; Sigma), anti-giantin (mouse monoclonal 9B6; Abcam), anti-gI 
[mAb3104 (Johnson et al., 1988)], anti-gD [mAb4846, (McLauchlan et al., 1994)], anti-gE 
[mAb3114 (Johnson et al., 1988)] and anti-pUL48 (mAb1-21; SantaCruz Biotechnology). 

For immunofluorescence studies, goat or human serum (5 %) was used to block the Fc receptor-
binding sites of the gE–gI complex prior to incubation with the antibodies. 
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The secondary antibodies used were: Alexa Fluor 488- or 568 conjugated goat anti-mouse (GAM488 
and GAM568), Alexa Fluor 568 conjugated goat anti-rabbit (GAR568) and Alexa Fluor 633-conjugated 
goat anti-mouse (GAM633) antibodies (Molecular Probes); Cy5-conjugated goat anti-rabbit 
(GARCy5) antibody (Jackson Immunoresearch); horseradish peroxidase-conjugated goat anti-mouse 
(GAMHRP) and goat anti-rabbit (GARHRP) antibodies (Sigma). 

 

Colocalization quantification. Immunofluorescence pictures of single cells were analysed by using 
the Histogram-Colocalization function of the LSM510 software (version 4; SP2). The colocalization 
coefficient was evaluated by the software as a percentage of the total fluorescence from one channel 
(TGN signal) colocalizing with the fluorescence of the second channel (capsid signal) at a fixed 
intensity threshold of 150 (out of 255) for each channel. 
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