Bone marrow CD34⁺CD38^{low/-} HPC cultured with OP9 stromal cells + IL-15, SCF, Flt3L (in MEMα + FBS)

Supporting Information Figure 1. TGF- β 1 delays or inhibits acquisition of CD94, CD16 and KIR on NK cells developing from bone marrow CD34⁺CD38^{low/-} HPC on OP9 stromal cells. Further characterization of experiments performed as described in Figure 1a. (A) Staining of CD56 versus CD161 (NKR-P1A) (gated by FSC/SSC/PI). (B) Averages of three experiments from two donors. Percentages of cells expressing CD94, CD16, or KIR were measured on gated CD56⁺ (or CD56⁺CD161⁺) NK cells. KIR were detected with pooled mAb HP-3E4, CH-L, and DX9. Data show means of measurements taken at approximately the same duration from different experiments ±SEM; * indicates p<0.05 in two tailed Student's t-test.

Bone marrow CD34+Lin- HPC cultured without stroma + IL-15, SCF, IL-7 (in MyeloCult + FBS + HS)

Percentage of gated CD56+ NK cells expressing:

Supporting Information Figure 2. TGF- β affects the percentage of CD16⁺ and KIR⁺ NK cells developing from bone marrow CD34⁺Lin⁻ HPC *in vitro* (without stromal

cells). Averages of 7-10 experiments performed as described in Figure 1c. Percentages of cells expressing CD16, KIR, or CD94 were measured on gated CD56⁺ NK cells. KIR were detected with pooled mAb HP-3E4, CH-L, and DX9. Data show means of measurements taken at approximately the same duration from different experiments \pm SEM; * indicates p<0.05 in two tailed Student's t-test. Effects on acquisition of CD94 may require higher TGF- β concentrations (as Supporting Information Figure 1). Sorted human peripheral blood populations after ~2 week culture + IL-15:

Supporting Information Figure 3. TGF- β inhibits and down-regulates CD16 expression on CD56^{bright} NK cells from human peripheral blood. In addition, TGF- β appeared to down-regulate CD56 expression on sorted CD56^{dim}CD16⁺ NK cells, while TGF- β addition or neutralization had less effect on CD56 levels on sorted CD56^{bright} NK cells. This may indicate that altered TGF- β signaling may contribute to the "CD56^{dim}" phenotype following commitment to the CD56^{dim}CD16⁺ stage. Averages of three experiments performed as Figure 3a-c. Briefly, human blood NK populations were sorted as indicated, then cultured with IL-15 (20ng/ml) plus IgG1, or anti-TGF- β 1D11 mAb (10µg/ml), or added TGF- β 1 (2ng/ml). After approximately two weeks, cells were analyzed by flow cytometry. Results from sorted CD56^{bright}CD16^{low} and CD56^{bright}CD16^{high} populations were pooled for analysis and labeled CD56^{bright}CD16⁺. Error bars represent SEM; * indicates p<0.05 in two tailed Student's t-test.

Supporting Information Figure 4 (next page). TGF- β 1 affects expression of several cell surface molecules on NK cells. (A) NK cells enriched from human peripheral blood were sorted into CD56^{bright} and CD56^{dim}CD16⁺ subsets as indicated. (Sort purity is also shown). (B) Phenotype of cells after culture for approximately 14 days with IL-15 (20ng/ml) plus anti-TGF- β 1D11 mAb (10µg/ml) or added TGF- β 1 (2ng/ml). Median fluorescence intensity (minus median fluorescence of IgG control) or percentage of cells staining positively is depicted for each mAb. Two independent experiments are shown (along with the mean).

B Approx. 2 weeks + IL-15

 $\label{eq:supporting} \mbox{ Information: TGF-$$$$} \mbox{ GF-$$$$} affects development and differentiation of human natural killer cell subsets European Journal of Immunology}$

Supporting Information Figure 5. TGF- β receptor expression on human NK cell subsets. Microarray data, derived from reference [4] online supplementary file #2, comparing sorted CD56^{bright}CD16⁻ and CD56^{dim}CD16⁺ NK cell subsets. Shown are average hybridization intensity and SD for several probe-sets recognizing TGF- β receptors. * indicates p<0.05 in a two-tailed Student's t test. A second unpublished microarray dataset (Affymetrix human genome U133 Set) comparing CD56^{bright}CD16⁻ and CD56^{dim}CD16⁺ NK cells confirms the trends observed for TGFBR2 and TGFBR3 expression and suggests that CD56^{dim}CD16⁺ cells may also express higher levels of TGFBR1 transcripts compared with CD56^{bright}CD16⁻ NK cells (not shown).