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1 Web Appendix A: Best predicted values

under different assumed distributions

1.1 Assuming bi a mixture of normals

Assume that bi follows a scaled, two-component, mixture distribution. If bi

is sampled from the first component (indicated as c = 1) then its conditional
distribution is N (−σbδ(1− p), σ2

b τ
2), where τ 2 = 1− δ2p[1− p]. When c = 2

(second component) and using the notation σ2
bw = σ2

b τ
2 (for the variance

of b within a component) the conditional distribution is N (σbδp, σ
2
bw). As in

Verbecke and Lesaffre (1996) it is straightforward to derive the best predicted
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values in a linear mixed model:

b̃i = E[bi|Ȳi·]

= E
[
E[bi|Ȳi·, c]

]
, (1)

= π(1)E[bi|Ȳi·, c = 1] + [1− π(1)]E[bi|Ȳi·, c = 2]

= π(1)

{
−σbδ(1− p) +

σ2
bw

σ2
bw + σ2

ε /n
[Ȳi· − x̄′i·β + σbδ(1− p)]

}

+[1− π(1)]

{
σbδp +

σ2
bw

σ2
bw + σ2

ε /n
[Ȳi· − x̄′i·β − σbδp]

}

=
σ2

bw

σ2
bw + σ2

ε /n
(Ȳi· − x̄′i·β) +

σ2
ε /n

σ2
bw + σ2

ε /n
(−π(1)σbδ(1− p) + [1− π(1)]σbδp)

where π(1) is the conditional probability of being from component 1 given
Ȳi· and is given by

π(1) =
p exp

{
− (Ȳi·−x̄′i·β+δσb[1−p])2

2(σ2
bw+σ2

ε /n)

}

p exp
{
− (Ȳi·−x̄′i·β+δσb[1−p])2

2(σ2
bw+σ2

ε /n)

}
+ (1− p) exp

{
− (Ȳi·−x̄′i·β−δσbp)2

2(σ2
bw+σ2

ε /n)

} . (2)

1.2 Assuming bi exponential

When the distribution of the random effects is assumed to be exponential, it
is also possible to explicitly calculate the BPs. Rewriting the linear mixed
model in terms of random variables, ai with standard exponential distribu-
tions (bi = σb[ai − 1]), we have

Yit = x′itβ − σb + σbai + εit

ai ∼ i.i.d. E(1) independent of (3)

εit ∼ i.i.d. N (0, σ2
ε ).

We proceed by first calculating the conditional distribution of ai given Y,
which is proportional to the joint distribution of ai and Y. We suppress the
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index i and write µt for x′itβ to simplify the presentation.

fa|Y ∝ exp

{∑
t

−1

2σ2
ε

(Yt − µt + σb − σba)2 − a

}
I{a>0}

∝ exp

{−nσ2
b

2σ2
ε

a2 − 2σ2
ε

2σ2
ε

a +
2σba

2σ2
ε

(ΣtYt − Σtµt + nσb)

}
I{a>0}

∝ exp

{
−nσ2

b

2σ2
ε

(
a−

[
1

σb

(Ȳ − µ̄ + σb)− σ2
ε

nσ2
b

])2
}

I{a>0}. (4)

This shows that the conditional distribution of ai given Y is a truncated
Gaussian, truncated above 0. The standardized variable, a∗ =

√
nσb

σε
a, follows

a truncated Gaussian distribution with mean

∆ =

√
n

σε

(Ȳ − µ̄ + σb)− σε√
nσb

, (5)

variance 1 and again truncated above 0. The expected value of a∗ given Y is

E[a∗|Y] = ∆ +
φ(∆)

Φ(∆)
, (6)

where φ(·) and Φ(·) are, respectively, the standard Gaussian p.d.f. and c.d.f.
Finally the BP of bi is given by

b̃i = E[σb(ai − 1)|Y]

= E

[
σb

(
σε√
nσb

a∗i − 1

)∣∣∣∣Y
]

= σb

(
σε√
nσb

∆ +
σε√
nσb

φ(∆)

Φ(∆)
− 1

)

= Ȳi· − x̄′i·β −
σ2

ε

niσb

+
φ(∆i)σε

Φ(∆i)
√

ni

. (7)

where, in the last line, we have returned the subscript i, x̄i· =
∑

t x̄it, and
∆i =

√
ni(Ȳi· − x̄′i·β + σb)/σε − σε/(

√
niσb).

Using numerical methods, it is straightforward to calculate and plot the
distribution of the BPs. Figure 1 shows the density for various cluster sizes,
an assumed exponential distribution, but a true Gaussian distribution and
again using σ2

ε = 3 and σ2
b = 1.
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Figure 1: Plot of best predictor density for various cluster sizes with an
assumed exponential but true Gaussian density
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1.2.1 MSE of prediction under an assumed exponential distribu-
tion

We next evaluate the mean square error of prediction under a model with an
assumed exponential distribution for the random effects. Rewriting the best
predicted value, (7), using Ȳi· − x̄′i·β = bi + ε̄i· we obtain

b̃i = bi + ε̄i· − σ2
ε

niσb

+
φ

(√
ni

σε
(bi + ε̄i· + σb)− σε√

niσb

)
σε

Φ
(√

ni

σε
(bi + ε̄i· + σb)− σε√

niσb

)√
ni

. (8)

Using the notation
D
= to represent “equal in distribution”, the conditional

distribution of b̃i − bi given bi has the following equivalency

b̃i − bi|bi
D
= Z

σε√
ni

− σ2
ε

niσb

+
φ

(√
ni

σε
(bi + σb) + Z − σε√

niσb

)
σε

Φ
(√

ni

σε
(bi + σb) + Z − σε√

niσb

)√
ni

, (9)

where Z ∼ N (0, 1). This construction makes it straightforward to numeri-
cally evaluate the mean square error of prediction under different true dis-
tributions since it is equal to the double integral of the square of (9) with
respect to a standard Gaussian distribution and the true distribution of bi.

1.3 MSE of prediction under an assumed mixture dis-
tribution

The mean square error of prediction under a model with an assumed mix-
ture distribution for the random effects can be calculated as in the previous
section. Using (1) we can rewrite b̃i as follows

b̃i
D
=

σ2
bw

σ2
bw + σ2

ε /n
(bi+σεZ/

√
n)+

σ2
ε /n

σ2
bw + σ2

ε /n
(−π(1)σbδ(1− p) + [1− π(1)]σbδp)

(10)
with

π(1)
D
=

p exp
{
− (bi+σεZ/

√
n+δσb[1−p])2

2(σ2
bw+σ2

ε /n)

}

p exp
{
− (bi+σεZ/

√
n+δσb[1−p])2

2(σ2
bw+σ2

ε /n)

}
+ (1− p) exp

{
− (bi+σεZ/

√
n−δσbp)2

2(σ2
bw+σ2

ε /n)

} .

(11)
Again, this construction makes it relatively easy to numerically evaluate the
mean square error of prediction under different true distributions.
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Table 1: Percentiles of a Gaussian and standardized Tukey(0.5,0.1) distribu-
tion

Percentile Gaussian(0,1) Standardized Tukey(0.5,0.1)
.1% -3.09 -1.89
1% -2.33 -1.40
2.5% -1.96 -1.21
5% -1.64 -1.06
10% -1.28 -0.89
50% 0 -0.21
90% 1.28 1.09
95% 1.64 1.73
97.5% 1.96 2.47
99% 2.33 3.62
99.9% 3.09 7.68

2 Web Appendix B: Additional simulations

2.1 Random Intercepts

We performed additional simulation studies to evaluate the performance of
the BPs under different true and assumed distributions in the more realistic
situation in which all the parameters were estimated. We tested two distri-
butions for the random intercepts: a Gaussian distribution and a Tukey(g, h)
distribution. The Tukey distribution was chosen to evaluate the performance
under a distribution representing an extreme departure from the Gaussian.
Depending on the values of g and h the Tukey distribution can be quite
skewed and/or heavy-tailed. See He and Raghunathan (2006) for a recent
reference. We chose g = 0.5 and h = 0.1, which gives a mean of 0.31, variance
of 2.27, skewness of 3.41 and a kurtosis of 44.24. This was then standardized
to have mean zero and variance one. Table 1 gives some percentiles for this
standardized distribution, illustrating its extreme right tail.

Using these two random effects distribution, we simulated eight different
scenarios. For a continuous outcome, linear mixed model with Gaussian er-
rors and for a binary outcome, logistic regression, we simulated the four com-
binations of assumed and true distributions (Gaussian and Tukey). The sim-
ulations used two covariates: one within cluster (xw) and one between cluster
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covariate (xb). The within cluster covariate was equally spaced between 0
and 1. The between cluster covariate was binary with a 25%/75% division.
The parameter values were set as follows: β0 = −2, βbetween = 1, βwithin =
1, σb = 1, and, for continuous outcomes, σε = 1. The number of clusters, m,
was set to 100 and a variety of cluster sizes used (n = 2, 4, 6, 10, 20, and 40).
The linear predictor for subject i, observation t was given by

β0 + b0i + βbetweenxb,i + βwithinxw,it. (12)

To each simulated data set we fit two GLMMs with either an identity
or logistic link. One model assumed that the random effects were standard
Gaussian while the other assumed the random effects followed a standardized
Tukey(0.5, 0.1) distribution. To assess the effect of misspecification, we did
not allow the program to estimate the parameters of the Tukey distribution,
but rather fixed them at g=0.5 and h=0.1. Otherwise the comparison con-
founds the issue of misspecification of distributional shape with estimation
of two additional shape parameters.

Figure 2 gives the results; the lefthand panels displays the results for
continuous outcomes and the righthand panels binary outcome. The rows
correspond to the true distributions (first row true Gaussian and second row
true Tukey). Each panel plots the mean square error of prediction versus
cluster size for each of the two assumed distributions.

The main message is that the primary determinant of the MSEP is the
cluster size. In each case, using the incorrect distribution causes only a slight
degradation in the MSEP, especially for smaller cluster sizes (i.e., less than
20). So even in this case, where the two distributions are quite different, only
a modest impact is seen in getting the distributional assumptions wrong.

We investigated more closely the reasons for the modest discrepancies
(continuous outcome, true Gaussian and binary outcome, true Tukey). In
the case of the continuous outcome most of the discrepancy was due to the
fact that the mean of the predicted random effects under the assumed Tukey
was not zero. Simply normalizing the values to have mean zero generated
much more accurate predictions. In the case of the binary outcome a very
small percentage of extremely large random effects (less than 0.5%) gener-
ated under the Tukey distribution were poorly predicted under the assumed
Gaussian distribution. When those were excluded, the prediction error for
the Gaussian distribution was almost the same as under the true Tukey dis-
tribution.
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Figure 2: MSE of Prediction for continuous and binary outcomes under
assumed and true Gaussian and Tukey distributions
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Even though there were modest discrepancies in MSEP, the rank corre-
lations between random effects calculated under different assumed distribu-
tions was uniformly high. In each of the four cases displayed in Figure 2
the Spearman rank correlation between pairs of predictions was greater than
0.95.

2.2 Random intercepts and slopes

We also simulated data from a random intercepts and slopes model for both
normally distributed and exponentially distributed random effects. This was
similar to the random intercepts models but with a linear predictor given by

β0 + b0i + βbetweenxb,i + (βwithin + b1i)xw,it. (13)

We used SAS Proc NLMIXED to fit the models. Since NLMIXED is re-
stricted to normally distributed random effects, for the exponentially dis-
tributed random effects we rewrote each random term as a function of a
normal distribution:

bki = − log(1− Φ(Zk))− 1, (14)

where Zk were distributed with means 0, variances 1 and correlation ρ. As
with the random intercepts we simulated data sets with 100 clusters of size
n = 2, 4, 6, 10, 20, and 40 and used the same parameter values as above except
that var(bki) = 0.5 = ρ.

Figure 3 reports the results for predicting both the random slopes and
intercepts. As before, there is a modest efficiency loss due to having the
incorrect distribution for estimating the intercepts. For estimating the slopes
the results are much more comparable, with little efficiency loss.

We also simulated a more challenging situation with var(bki) = 2 and
ρ = 0.5. Table 2 gives the results for estimating the random intercepts for
continuous (linear link) and binary outcomes (logistic link) when the true
distribution is exponential. We see again the similar pattern: under the
incorrect Gaussian assumption there is a modest loss of efficiency. This is
somewhat worse for the binary outcome and worsens with increasing cluster
size.
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Figure 3: MSE of prediction for continuous outcomes under assumed and
true Gaussian and exponential distributions using a random intercepts and
slopes model
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Table 2: Mean square error of prediction of random intercepts under a true
exponential distribution and assumed Gaussian or exponential distributions
mixed effects model with random intercepts and slopes

Continuous Binary
Cluster size Gaussian Exponential Gaussian Exponential

4 0.26 0.22 1.06 0.98
6 0.19 0.17 0.86 0.82

10 0.14 0.14 0.67 0.62
20 0.13 0.11 0.50 0.45
40 0.11 0.09 0.43 0.32
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Figure 4: Matrix scatter plot of predictions from the four random intercept
models for the HERS example
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3 Web Appendix C - Plot of best predicted

values for the HERS example

Figure 4 gives a plot of the predicted values derived from the four different
random effects distributions (Gaussian, Tukey, discrete and exponential) fit-
ted to the random intercepts model. The Tukey and Gaussian predictions
are very similar, indicative of the fact that the estimated Tukey distribution
was fairly close to Gaussian. There is good agreement between all the dis-
tributions, with the main differences at the extremes. The predicted values
under the exponential assumption reflect the truncation in the left tail.
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4 Web Appendix D - Numerical details for

main manuscript

Integration to generate Figures 1 through 5 in Section 3 was performed using
Maple Version 12 (Maplesoft: Waterloo, Ontario, Canada). Figure 5 was
double checked by Monte Carlo integration and simulation using Matlab
Version 6.5 (Mathworks: Natick MA). The simulations in Section 5 were
conducted using SAS Version 9.1 (SAS Institute: Cary NC) with the models
fit using NLMIXED. The fits to the example in Section 6 were performed
using Proc MIXED and NLMIXED in SAS Version 9.1, excepting the discrete
distribution fit which used the GLLAMM module (www.gllamm.org) in Stata
Version 11.0 (Statcorp: College Station TX).

NLMIXED estimates random effects using posterior modes rather than
the actual best predicted value, defined as a conditional or “posterior” mean
of the random effect given the data. These agree for a linear, Gaussian, mixed
model but may not otherwise. We conducted limited simulation studies to
compare the performance of posterior modes versus means using NLMIXED
and Stata’s GLLAMM macro (which does estimate posterior means) under
binary outcome, logit link models with random effects variances of 1 and 4
and a true Gaussian distribution. These studies indicated that predictions
based on posterior modes closely corresponded to those based on posterior
means. Correlations of calculated MSEP for posterior means and modes were
about 0.95 across replicate data sets. Absolute values of the MSEP were
slightly higher (about 10%) for the posterior modes (not surprising since the
posterior mean is optimized for MSEP). We did not explore the impact of
using posterior modes under other true random effects distributions.
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