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ABSTRACT

A new modeling technique for arriving at the three
dimensional (3-D) structure of an RNA stem-loop has
been developed based on a conformational search by
a genetic algorithm and the following refinement by
energy minimization. The genetic algorithm simulta-
neously optimizes a population of conformations in
the predefined conformational space and generates
3-D models of RNA. The fitness function to be
optimized by the algorithm has been defined to reflect
the satisfaction of known conformational constraints.
In addition to a term for distance constraints, the
fitness function contains a term to constrain each local
conformation near to a prepared template conforma-
tion. The technique has been applied to the two loops
of tRNA, the anticodon loop and the T-loop, and has
found good models with small root mean square
deviations from the crystal structure. Slightly different
models have also been found for the anticodon loop.
The analysis of a collection of alternative models
obtained has revealed statistical features of local
variations at each base position.

INTRODUCTION

RNAs perform a wide variety of biological functions such as
self-cleaving reactions of ribozymes, protein synthesis by rRNAs
and recognition of aminoacyl-tRNA synthetases by tRNAs.
These functions should be understood not only on the basis of
their primary sequences and secondary structures, but ultimately
on the basis of their three-dimensional (3-D) structures. The
analysis of RNA 3-D structures is indispensable to clarify the
structure-function relationships and the evolution of RNAs.
X-ray crystallography and NMR spectroscopy are powerful

experimental methods for the determination of protein structures
at the atomic resolution. Thus far, however, neither method has
been powerful enough for the analysis of RNA structures. Only
the structures of tRNAs (1-4) and short synthetic RNAs have
been determined by X-ray crystallography. Recently the struc-
tures of tetraloops (5,6) and a three-nucleotide hairpin loop (7)
have been determined by 2-D NMR spectroscopy. Nikonowicz et
al. reported that they were applying 3-D heteronuclear NMR
study to hammerhead catalytic domain (8). Overall, our knowl-
edge on RNA 3-D structures is quite limited.

To cope with this situation, computer modeling is becoming a
substitute method for the analysis of 3-D RNA molecular
structures [for review see (9)]. Molecular modeling aims to find
the 3-D structures ofRNA that satisfy the structural information
obtained by various methods such as electron microscopy,
neutron scattering, low resolution X-ray and NMR analysis,
site-directed mutagenesis, crosslinking, chemical and biochemi-
cal probing, phylogenetic comparison and secondary structure
prediction by free energy minimization. The constructed models
are considered to be useful for the design of further experiments.
Manual or interactive modeling techniques have been utilized

to propose 3-D models for 16S rRNA (10,11), 5S rRNA (12,13),
tRNA er (14), group I intron (15-17), Ul snRNA (18) and
tetraloops (19). Although the manual approach has been popular,
it is dependent on the decisions of experts who construct RNA
structural models. Therefore, several automatic modeling tech-
niques have recently been proposed. One employs the distance
geometry algorithm to fold pseudo atoms representing RNA
molecules (20,2 1). Another systematically searches the con-
formational space by building up nucleotides in a discrete
nucleotide conformational set (22-24). Conventional molecular
mechanics calculations have also been employed for automatic
modeling of RNA (25-29). Here we present a new automatic
modeling technique suitable for RNA stem-loop structures and
its application to the two loops of tRNA.
The main stage of any automatic computer modeling technique

is a conformational search procedure or model building phase.
We have developed a conformational search program based on a
genetic algorithm. Genetic algorithms (GAs), which mimic the
natural selection in evolution and efficiently search the combina-
torial space (30,31), are recently gaining recognition as an
important tool for conformational search of biological macro-
molecules (32). Lucasius etal. (33) used aGA to determine DNA
structure from anNMRNOE table. We used their way of variable
mapping. Dandekar and Argos (34) reported a GA simulation
study on the folding of a four a stranded bundle. GAs have the
aspects of both probabilistic and heuristic search algorithms. The
efficiency of this duality was demonstrated by Unger and Moult
(35) in the study of two dimensional folding simulations by both
GA and Monte Carlo simulations. Sun (36) also employed a GA
for protein folding prediction with a reduced representation
model.
The description of the backbone conformation of a single

nucleotide requires six dihedral angles, which is to be compared
with only two for an amino acid in the protein backbone. Thus,
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the conformational space is expected to be enormous, even for a
short RNA. Furthermore, it is often the case that the constraints
available are too limited to determine a unique structure, so we
have to somehow put restrictions to the search space. In fact,
manual modeling technique usually limits the conformational
space of local segments by choosing one appropriate conforma-
tion from a collection of conformations (37). One of the novel
aspects of the modeling technique reported in this paper is that the
fitness function to be optimized by the GA has a term to stabilize
each local segment near to a predefined conformation, in addition
to a term to satisfy the distance constraints given by experiments
or sequence analysis.

In the present study we focus our analysis on the stem-loop
structures which often correspond to functionally important sites.
Thus, we adopt an atomic resolution model for local folding
patterns of RNA molecules. In comparison, pseudoatom repre-
sentation might be recommended for global RNA folding
problems, such as helix packing of rRNA. Our GA based
conformational search technique has been tested for the two loops
of tRNA.

MATERIALS AND METHODS

Definition of variables and a segment

In an atomic resolution model ofRNA, covalent bond angles and
lengths are treated as constant. The conformation of a single
nucleotide is defined by the seven variables, a, [S, y £,, X and
P (Fig. 1). The pseudorotational phase angle P describes sugar
puckering and defines dihedrals in sugar, vi, by the following
equation (38):

Vi = Vma cos[P+ 4(i2) (1)

where i = 0-4 and the pucker amplitude is assumed to be constant,
vn, = 38°. Dihedrals in sugar, vi, are used for the generation of
atomic coordinates. If Cartesian coordinates had been used as
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Figure 1. Seven variables describing the nucleotide conformation and the
definition of the segment.

variables instead of the above seven variables, there would have
been a 9-fold increase in the number of variables required. We
analyzed the values ofthe seven variables that were actually taken
in the known RNA structures in the Brookhaven Protein Data
Bank (39). As shown in the outside ring of Figure 2 the observed
values are localized in some limited ranges. Thus, in the stage of
the GA search described below we restrict the sampling of the
values to these ranges; specifically, each of the seven variables
randomly changes its value in the respective range.

It may often be the case in molecular modeling that some parts
ofRNA are known or assumed to take specific conformations. So,
it is necessary to add conformational constraints to local segments
of generated models. We define a segment as a part ofRNA that
is composed of a nucleotide, C3' and 03' atoms of the
5'-neighboring nucleotide and P atom of the 3'-neighboring
nucleotide (Fig. 1). Two adjacent segments therefore share three
atoms.

Local conformations of double helices and single
stranded loops
Since double helices of RNAs are found only in the A-form, the
conformation of a Watson-Crick base-paired stem is fixed
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Figure 2. Observed values of the seven variables that are actually taken in the known RNAs (blue outer ring). The data set taken from the Protein Data Bank was
composed of4TNA (tRNAPhe), 2TRA (tRNAASP), lOFX (hybrid RNA/DNA duplex), lBMV (single stranded RNA from virus), 2TMV (single stranded RNA from
virus) and 1RNA (RNA duplex), which included 194 ribonucleotide units. At the stage of the GA search, each variable randomly takes discrete values within the dark
and light blue areas. In order to show the actual sampling range, the values taken in the 2000 GA-optimized models and the 72 accepted models for the first segment
of the anticodon loop are shown in the green and red inner rings, respectively. The blue and red triangles indicate the values in the crystal structure and the fittest model,
respectively.
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throughout our modeling process to the idealized A-RNA. The
actual A-form conformation was generated with Insight/Discover
(Biosym Technologies).
General knowledge about the structure of single stranded loops

is not abundant, which is why we focus the search on stem-loop
structures. In this study, every segment conformation in a loop is
assumed to be stabilized near to A-segment conformation, the
conformation of the segment in the ideal A-RNA (see Dis-
cussion). It should be noted that even if every segment
conformation in a loop is constrained near to A-segment in the
search, the conformational space of the entire loop structure is
enormous.

Fitness function for the evaluation of model structures

The evaluation function to be optimized is usually called the
fitness function in GAs. By gradually optimizing or maximizing
the fitness values for a population of conformations, we try to
obtain desirable conformations. Our fitness function consists of
the three terms:

F = Fdp + Frepel + Fseg (2)

representing the distance and positional constraints, the stereo-
chemical constraints of atomic collisions and the local conforma-
tional constrains over the segments.
The first term of Eq. (2), which evaluates the extent of

satisfaction in distance or position constraints, is given by:

Fdp = E i dp (3)

and

(0 < Diffi < DifJ)
(Difi < Diff. < Diffi),

(DifFi < Diffi)

where Diff is the violation of the i-th constraint, DiffU and DiffC
are the upper limit and the cut-off value of the i-th constraint,
respectively, and wi is the weight for the constraint.
The second term of Eq. (2), a simplified repulsion force, is

given by:

Frepel = Wrepeli FplI (5)

and

(O ' rj < Rj)
(Rj < rj)

where rj is the distance between the j-th pair of atoms, Rj is the
sum of van der Waals radii of the two atoms and weppel is the
weight of this term. The repulsion force is calculated when the
two atoms listed in Table 1 are in different nucleotides.
The last term of Eq. (2) enables to restrict each segment

conformation. If the k-th segment is assumed to take a known
conformation, the atomic coordinates of the k-th segment
generated in the process of the conformational search are

superposed to the known ones by Kabsch's method (40,4 1), and
the root mean square distance, Rmsk , of all atoms in the segment
is calculated. Then Fseg is given by:

Fseg = I Wk Fseg (7)

and

Rmsc Rmsk

kSe = i Rmsc
0

0 C Rmsk < Rmsk)
(Rms4 < Rmxk) (8)

where Rrnskc is the cut-off value of this term and wk is the weight
for the k-th segment constraint.

Table 1. Atom species for which the repulsion forces are calculated

Atom species

main chain and ribose 05' 03' Cl'

Adenine C2 N6 C8

Cytosine 02 N4 C6

Guanine N2 06 C8

Uracil 02 04 C6

Genetic algorithm based conformational search

The fitness function defined above is gradually optimized by the
search procedure employing the concept ofGAs to find desirable
conformations. In the field of GAs, candidates of solutions kept
in the system is named individuals. Our GA based search
algorithm starts with Nindividuals; that is, the starting population
contains Nconformations. By randomly changing and mixing the
variables describing conformations, a new population of con-
formations is generated (genetic operation). Then N individuals
are selected in accordance with their fitness (selection and
creation of new generation). Iterating these two processes, we
obtain conformations with higher fitness values.
The conformation of RNA is determined uniquely by the

collection of nucleotide conformations, each of which is de-
scribed by the seven variables mentioned above. In the conforma-
tional search, a variable is assumed to take n bits of discrete real
values. Thus, when n bits are assigned to each variable, the
conformation of RNA consisting of k nucleotides is represented
by 7kn bit string. This long bit string is called a 'chromosome'.
In GAs, a method called Gray coding is often used for a way of
mapping between a decimal number and a bit string. If the
difference of two decimal numbers is one, the corresponding bit
strings can differ by several bits in the binary codes, but they
always differ by one bit in the Gray codes. So it is easier for the
Gray codes than the binary codes to move around adjacent values.

In each generation ofthe GA, Nchromosomes are kept and they
undergo two types of genetic operations: 'mutation' and 'cross-
over'. A mutation operation corresponds to random changes in
variables. N chromosomes are copied as parents and they are
subject to mutation operations. First an individual is randomly
selected from theseN copies. Then a position of its chromosome
is randomly selected for a point mutation, which may result in a
change of the bit. This process is iterated for m times. After the

r.i
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mutation operation cycle, the total population size in the pool of
chromosomes becomes 2N.
A crossover operation is to mix parts of two chromosomes to

generate a new one. In this study, one-point crossover is adopted.
One pair of chromosomes is selected from 2N chromosomes
generated by the mutation operation. One crossover point is
selected from the joints of the variables assigned on the
chromosomes and left or right part of the two parents are
exchanged. The fittest of the two sons brought by one crossover
operation is added to the pool of chromosomes. The crossover
operation is considered to be the most important procedure in
GAs, which is absent in other conformation search algorithms
such as Monte Carlo simulation and simulated annealing. The
crossover operation is iterated c times. After this operation, the
total population in the pool of chromosomes becomes 2N + c.
From the pool of chromosomes of parents and sons, N

chromosomes are selected according to their selection probabil-
ities. The selection probability pi of the i-th chromosome is
defined as:

Fi - Fmin
P'(Fi - Fn) (9)

where Fi is the fitness of the i-th chromosome and Fnin is the
fitness of the chromosome that has the least fitness in the pool of
chromosomes.
We iterate these genetic mutation, crossover and selection

procedures until we obtain conformations with reasonable fitness
or until a predescribed number of generations is reached. The
computer program is written in C, and it is executed on a Sun
workstation.

Rermement by energy minimiation

The model conformations obtained by the GA search are then
refined by the energy minimization in vacuum to remove steric
hindrances. Using CHARMm (42) 200 cycles of steepest
descents minimization are followed by 1000 cycles of adopted
basis Newton-Raphson minimization with a distance-dependent
dielectric constant (Eo = 4r). SHIFT function and SWITCH
function available inCHARMm are used as smoothing functions
of the Lennard-Jones potential and the electrostatic potential,
respectively. The stem regions are fixed in all minimization
procedures. The calculation is carried out on a supercomputer,
CRAY Y-MP2E.

RESULTS

Modeling of tRNA stem-oops

Our technique was tested on the anticodon arm and the T-arm of
tRNAPhe. Each ofthe arms consists ofa five base-paired stem and
a seven nucleotides loop (Fig. 3). For simplicity, modified bases
were replaced by their metabolic parents. The anticodon loop is
involved in the inter-molecular interaction with mRNA and the
T-loop in the intra-molecular interaction with other parts of
tRNA. In the case of the anticodon loop modeling, the five
nucleotides, G34, A35, A36, G37 and A38 were assumed to be
stacked. This structural information had been proposed before the
X-ray crystal structure was solved (43). The structural informa-
tion adopted for the T-loop modeling consisted of the base

Anticodon loop
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Figure 3. Structural infornation adopted for the anticodon loop and the T-loop
calculations. Stacked bases are indicated by bold letters. +-: positional
constraint. ++: reverse Hoogsteen base-pair. This infornation is transformed to
the constraints between atoms (Table 2) in the conformational search process.

Table 2. Distance constraints representing the structural knowledge

arm S-base 3-base aiom in 5'-base atin in 3-base distance (A)
andcodon arn G A NI N7 3.6

N3 N7 3.5
C5- N7 3.4

A A NI N7 3.6
N3 N7 3.5

(stackdng) CS N7 3.4
A G N I N7 3.6

N3 N7 3.5
C5 N7 3.4

A U N3 N1 3.6
N3 N3 4.2
N3 CS 3.5

T-ann G U N3 N 1 3.7
N3 N3 4.2
N3 CS 3.4

(stacking) U U 02 N 1 3.7
02 N3 4.4
02 CS 3.5

(reverse Hoogsteen U A 02 N6 2.9
base-pair) N3 N7 2.9

stacking assumption of the bases G53, U54 and U55, and the
reverse Hoogsteen base-pair between U54 and A58. This
base-pair could be detected by phylogenetic comparison (44) and
low resolution NMR spectroscopy (45,46). All the structural
information described here was also used in the loop modeling by
Major et al. (22).
The knowledge on the base stacking and the reverse Hoogsteen

base-pair is incorporated in the first term of Eq. (2) as distance
constraints between pairs of atoms (Table 2). Taking into
consideration that the stacking pattern is characterized by the
polar group of one base superposed over the aromatic system of
the adjacent base (38), the atom pairs representing base stacking
were selected as shown in Table 2, and the distances were taken
from the ideal A-RNA. The constraints concerned with the
reverse Hoogsteen base-pair were given from the data of
hydrogen-bonding distance determined by neutron diffraction
(38). The repulsion force, the second term of Eq. (2), was
considered for the atoms in the seven nucleotides of the loop and
in the two nucleotides ofthe stem (A31 and U39 for the anticodon
stem; G53 and C61 for the T stem). The position of the P atom of
the last nucleotide in the loop is restricted by the position
constraints of the first term of Eq. (2).
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Figure 4. The model structure of the lowest rmsd (yellow) in comparison with the crystal structure (blue): (a) the anticodon loop and (b) the T-loop. The two pyrimidine
bases of U59 and C60, which project out on the left tip of the T-loop, were in agreement with the crystal structure.

The initial structures of the two loops were taken as ideal
A-RNAs, which completely satisfied the local conformational
constraints as specified by the third term of Eq. (2). Atomic
coordinates of the loop were generated successively from the
5'-end of the loop, so for example, A38 and U39 of the anticodon
loop were not closed in the initial structure.
Seven bits were assigned to each variable in the chromosome

representation. As such, each variable could take 128 different
values in the predefined range. Since a nucleotije conformation
is defined by seven variables, its conformational space is of the
order of 1014. We expect this search space would be sufficient for
a rough global search. DiffiU and Rmskc were set to 0.1 and 2.0 A,
respectively. The sum of the radii of two atoms, R1, was set to 3.0
A. With the exception of DiffU, Rmskc and R, the parameter
values were adjusted in order to obtain acceptable models (see
below). Therefore, Diffic was set to 20 A. The weights for the
three terms of Eq. (2) were 25, 40 and 1, respectively. The
population N was set to 20, the number of mutation operations m
was 20 (mutation rate was 1 bit/individual x generation) and the
number of crossover operations c was 4. One trial of the GA
search was set to 2000 generations, and 100 trials with different
random number seeds were performed for each of the anticodon
loop and the T-loop. The individual with the highest fitness was
always selected as a constituent of the next generation (elitist
model). The calculation time for one GA search was - 25 c.p.u.
min on a SPARCserver 690. 2000 (20 x 100) model structures
were obtained after the calculation for each of the two loops.
We then identified acceptable model structures for further

refinement analysis by the following three criteria: (i) Only one
model was selected from duplicates of the same models. (ii) The

root mean square violations of the upper limits Diffiu in Eq. (2)
and of the sum of van der Waals radii Rj in Eq. (3) must be lower
than 0.15 A. (iii) The distance of up to 2.5 A was permitted for
the loop closure between 03' ofthe last nucleotide of the loop and
P of the 3'-neighboring nucleotide in the stem.
These criteria reduced the number of model structures to 72 for

the anticodon loop and 148 for the T-loop. The accepted models
were then subject to refinement by energy minimization.

Comparison with the crystal structure

The refined model that was closest to the crystal structure is shown
in Figure 4a for the anticodon loop and in Figure 4b for the T-loop.
For the anticodon loop, the root mean square distance (rmsd) was
1.81 A for all atoms, 1.63 A for the main chain atoms, 1.52 A for
the phosphorus atoms, and 1.46 A for the glycosylic nitrogen
atoms. This best model ranked at the 22nd in terms of the fitness
values of the 72 accepted models; namely it was not the fittest. For
the T-loop, the rmsd was 1.76 A for all atoms, 1.37 A for the main
chain atoms, 1.28 A for the phosphorus atoms, and 1.42 A for the
glycosylic nitrogen atoms. The best model was the 72nd in terms
of the fitness values of the 148 accepted models. For comparison,
the algorithm by Major et al. found models with the rmsd of 2.00
A for the anticodon loop and 2.35 A for the T-loop (22).
Why was the best crystal-like structure not the fittest? First of all,

the structural information adopted to this test may not have been
adequate to reconstruct the crystal structure. Secondly, the distance
constraints in Table 2 may not have been sufficient to describe the
structural information. In any event, we consider that the GA based
global search must have covered an extensive conformational
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Table 3. Comparison of the accepted models and the crystal structure

loop model Number Rmsd (A)
of models Al main chie P glycosyl-N

Anticodon loop Accepted 72 3.81 3.93 3.91 3.10
Best 1 1.81 1.63 1.32 1.46
Mean 1 3.24 3.41 3.38 2.55

T-loop Accepted 148 3.43 3.17 3.19 2.86
Best 1 1.76 1.37 1.28 1.42

_ Mean I 2.34 2.37 2.40 1.68

space to find a crystal-like structure among the accepted models.
The wide sampling range covered by the search can be seen in
Figure 2 for the first segment of the anticodon loop in the
GA-optimized 2000 model structures and the 72 accepted models.
The mean nnsd between all the energy-minimized models and

the crystal structure is presented in Table 3 together with the rmsd
for the best model. In addition, we computed the mean structure
by averaging the coordinates after superposing all the refined
models. The rmsd between this mean structure and the crystal
structure is also presented in Table 3. The glycosylic nitrogen
atoms had lower rmsd than phosphorus atoms for both the loops.
It might be because the distance constraints adopted in the test
restrain the atoms in the bases more than those in the main chain.
The correlation coefficient between the refined energy value and
the rmsd was 0.45 for the anticodon loop and 0.49 for the T-loop.
Table 3 also indicates that the models for the T-loop are closer

to the crystal structure than the models for the anticodon loop. The
crystal structure of the anticodon loop is actually closer to the
A-form than that ofthe T-loop. The mean rmsd between segments
in the crystal structure and the A-form segment is 0.55 A for the
anticodon loop and 0.87 A for the T-loop. So the A-form
constraints over the segments would have been advantageous for
the anticodon loop rather than the T-loop. However, the long
range constraints ofthe reverse Hoogsteen base-pair seem to have
decreased the flexibility ofthe conformation ofthe T-loop. In fact,
for the anticodon loop quite different structures that satisfy the
five base stacking constraints were found in the models (Fig. 5).
One of them had a different stacking pattern, six base stacking on
the 3' strand. A structure with the loop bent over the major groove
was also found. In contrast, there were no noticeably different
models for the T-loop.

Statistics of model structures

The accessible surface area (47) is an index characterizing the
environment around atomic groups. In Figure 6a and b the mean
and the standard deviation of the accessible surface areas of the
bases in model structures are plotted for each base position of the
loop compared to the accessible surface area in the crystal
structure. Overall, the values were in agreement with the crystal
structure. This suggests that the environment of the bases that
were not constrained by base stacking or base pairing could be
determined from the structural information of other bases. For
example, U59 of the T-loop has high accessibility and is exposed
in the crystal structure. U59 and C60 take a similar structure of
bulges that loop out of the duplex, because of the adjacent
base-pairs of C61-G53 (Watson-Crick) and A58-U54 (reverse
Hoogsteen). No distance constraints were adopted for this
pyrimidine. The predicted mean accessible surface area is close
to that of crystal structure, although the value for C60 is

b

Figure 5. There were some variations of the model structures of the anticodon
loop. (a) A model for the anticodon loop with six bases stacking from U33 to
A38. The model satisfies stacking constraints over the five bases. (b) A model
for the anticodon arm with the loop bent over the major groove.

overestimated. The prediction for C56 and G57, which have no

distance constraint, are also good.
In order to estimate the fluctuation or ambiguity of the atomic

coordinates, the root mean square deviations from the mean

coordinates were computed for each of the P atoms and the
glycosylic nitrogen atoms (Fig. 6c and d). The values were

relatively small for the bases with stacking and/or base-pairing
constraints: A35, A36, G37 and A38 in the anticodon loop and
U54, U55 and A58 in the T-loop. The base G34 of the anticodon

a
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Figure 6. The accessible surface area of the bases and the root mean square

deviations of glycosyl nitrogen and phosphorus. In the upper panels, the
accessible surface area is plotted versus each base position for (a) the anticodon
loop and (b) the T-loop. The mean and standard deviation of the model structures
(solid line) in comparison with the crystal structure (dotted line). In the lower
panels, the root mean square deviations of the coordinates of glycosyl nitrogen
(solid line) and phosphorus (dotted line) from the mean coordinate are plotted
for(c) the anticodon loop and (d) the T-loop. Five base stacking (G34, A35, A36,
G37, A38) in the anticodon loop, and two base stacking (U54, U55) and a

base-pair between U55 and A58 in the T-loop were assumed in the calculations.

loop, which had stacking constraints, was more ambiguous than
the other bases with stacking constraints. This is consistent with
the finding of a bent loop model (Fig. Sb). This indicates that the
local constraints of the base stacking alone could not determine
the global conformation of the anticodon loop and, conversely,
the information of long range interaction was important for the
determination of local structure.

DISCUSSION

A single stranded region ofRNA such as a hairpin loop or a bulge
loop often participates in the interaction with other molecules. The
loop structure tends to be strongly dependent on its sequence, in

comparison with the Watson-Crick base-paired region which tends
to be standard helical A-RNA. Different structural elements
formed by loops may be responsible for functional diversity and
specificity of RNAs. For example, coat proteins of R17 and Q(
have specific interactions with RNA hairpins (48,49). The HIV rev

protein recognizes RNA stem-loop and activates specific gene

expression (50). Also the HIV tat protein interacts with tar RNA,
which contains hairpin and bulge, and activates the expression of
HIV genes (51). A 3'-terminal stem-loop of histone mRNA is
considered to be essential for the post-transcriptional coupling of
histone mRNA levels to DNA synthesis in mouse fibroblasts (52).
Many conserved tetraloop caps are observed in rRNA (53). The
analysis of loop structures may throw light on the general
properties ofRNA structures and the expression ofRNA functions.
We proposed a technique for the 3-D modeling of RNA

stem-loops. The conformational space that satisfy the given
structural information is searched by a GA. Because the search

space can be very extensive even for short RNAs and the target
function to be optimized is usually multimodal, the multiple
minima problem is inevitable. In the modeling of two loops of
tRNA, each of which consists of seven nucleotides, 7 bits were
assigned to each of the seven variables. Since each variable can
take 27 different values, the search space is about 10100. GAs have
been considered more promising to overcome the multiple
minima problem than other probabilistic search algorithms,
which we consider to be confirmed by the successful application
to the 3-D molecular modeling of tRNA loops.

In this study, a conformation of an RNA was defined by the
internal coordinates: six dihedral angles and the pseudorotational
phase angle. The Cartesian coordinates of atoms can define a
conformation of an RNA as well. However, the choice of the
intemal coordinates is better for the GA because random changes
of variables by the genetic operation often result in unrealistic bond
lengths and bond angles when the position vectors are the variables
describing a conformation. Moreover, the choice of internal
coordinates system reduces the number of variables by one ninth.
The point mutation operation is implemented here to change the

variables in the internal coordinate system, which then affects the
conformation of an RNA. Instead, the conformation of a segment
could be the direct target of mutation operations. This approach has
an advantage of reducing the search space, when variables
describing the conformation are highly correlated and also if
different conformations can be properly weighted. However, we
did not take this approach. Hundreds of X-ray crystal structures
have been determined for proteins, and the strong correlation is
observed between 0 and v in the Ramachandran map. In contrast,
the structural knowledge about nucleotide units in large RNAs is
very limited, since only a handful of RNA structures have been
determined and since the nucleotide backbone unit has the freedom
comparable to three amino acid residues. Thus, it is more difficult
to define a set of favorable conformations for nucleotide units than
for amino acid residues. Exploring the preference of nucleotide
conformations remains important and interesting work.
The basic idea of constructing the fitness function is automating

experts' knowledge and manipulation. Our fitness function
contains two types of constraints: the global constraint on
inter-atomic distances and the local conformational constraint
over segments by template superposition. Although the latter
constraint may be transformed to the former, it is more convenient
to have it separately. In manual modeling, an expert will build up
RNA models by consecutively choosing an appropriate segment
from a collection of conformations and adding small changes to
the conformation selected. These changes are necessary for larger
sampling of the search space; if segments attached are rigid,
sampling will be very sparse. The third term ofEq. (2) mimics this
manipulation not by hand but by a numerical form. The
transformation of experts' knowledge on structures into atomic
distance representation is intricate and laborious. We represented
the structural information by the first term of Eq. (2) and Table 2.
This should be considered a first step toward identifying
structural data and representing them in numerical forms. Further
development remains to be our future work.
The segments in the anticodon loop and the T-loop were assumed

to take A-segment-like structures and A-segment constraints were
applied in this study, because a lot of works support this assumption.
From the analysis of crystal structures of nucleotides, the similarity
with the local structure of A-RNA was indicated (54). Single
stranded RNAs have long been known to take A-RNA-like

(a)

180-

:160-
$ 140*

120-
100-

C, 80-

De 60-

C> 40-

< 20-

(c)

5.

_4.5-
3.1
<, 3.

A 2-

1.5-

........

4..

,
I

I

I
I



426 Nucleic Acids Research, 1995, Vol. 23, No. 3

conformation in aqueous solution (55). Since apurinic acids also
have the same property, the main chain interaction is considered to
be responsible for the right handed helical propensity of nucleic
acids rather than the base stacking interaction (56). With this
background, Kajava pointed out that A-RNA was appropriate for the
initial structure for modeling of tetraloops (19). When a single
standed region of RNAs has interaction with other molecules in
vivo, its local structure may not take A-RNA-like structure. The
analysis of crystal structures of nucleotide-protein complexes,
however, revealed that the conformation of the nucleotides is not
significantly different from the free state (57).
The GA based search is rather rough and does not aim at a local

search. In fact, the GA accepted models sometimes had steric
hindrances because of the simplicity of the fitness function and
the nature of non-differential search of the algorithm. Therefore,
we combined the global search by the GA with a local search by
the energy minimization. This strategy of combining global and
local searches is not new, but we think our results were obtained
largely by the new global search algorithm. The results indicate
that the structural information adopted for the T-loop modeling
was sufficient to predict the atomic coordinates, at least, of the
glycosylic nitrogen atoms. In addition, the analysis of alternative
models revealed the local variation of each base as shown in
Figure 6. It is one of the purposes of the automatic molecular
modeling to get this kind of statistical information. It is difficult
to obtain statistical features from manual modeling which handles
one single structural model at a time.
The technique reported here is able to deal with other types of

structures such as bulge loops and pseudoknots. Because of the
limitations of computational resources currently available, we
think the GA based algorithm with an extensive sampling space
as reported in this paper is applicable only to loops shorter than
about 20 nucleotides. However, if long-range structural informa-
tion is available for a larger molecule, the global search problem
can be divided into small problems as done by the entire tRNA
modeling by Major et al. (24). Further improvements of the
technique will also lead us to the modeling of larger RNAs that
play various roles in a cell.
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