Practical Synthesis of PC190723, An Inhibitor of the Bacterial Cell Division Protein FtsZ

Nohemy A. Sorto, Marilyn M. Olmstead and Jared T. Shaw* Department of Chemistry, One Shields Ave, University of California, Davis, CA 95616

shaw@chem.ucdavis.edu

Supporting Information	
List of Contents	
Materials and Instrumentation	Page S1-S2
Experimental Procedures	Page S2-S4
¹ H NMR and ¹³ C NMR Spectra	Page S5-S33
Complete References 7a, 7b, and 10.	Page S34
Crystallographic Data	Page S35-S36

Materials: Unless otherwise specified, all commercially available reagents were used as received. All reactions using dried solvents were carried out under an atmosphere of argon in flame-dried glassware with magnetic stirring. Dry solvent was dispensed from a solvent purification system that passes solvent through two columns of dry neutral alumina. Instrumentation: ¹H and ¹³C NMR spectra were obtained on a 300, 400, 600MHz NMR spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to TMS or DMSO-d (CHCl₃, s, δ 0.00), (DMSO-d, m, δ 2.50). Multiplicities are given as: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), dt (doublet of triplet), m (multiplet), brs (broad singlet). ¹³C NMR chemical shifts are reported relative to CDCl₃ (t, δ 77.16) DMSO-d (m, δ 40.0) unless otherwise noted. For the ¹⁹F NMR data, trifluoroacetic acid (TFA) was used as an internal standard. High resonance mass spectra were recorded on positive and negative ESI mode in methanol or acetonitrile unless otherwise noted. Melting points were taken on an EZ-melting apparatus and were uncorrected. Infrared spectra were taken neat. Silica gel chromatographic purifications were performed by flash chromatography with silica gel (Silicycle, 40–63 μ m) packed in glass columns. The eluting solvent for each purification was determined by thin layer chromatography (TLC) on glass plates coated with EMD silica gel 50F254 and visualized by ultraviolet. The following abbreviations are used throughout: ethyl acetate (EtOAc), diisopropylethylamine ((*i*-Pr)₂NEt).

2,6-Difluoro-3-hydroxy-benzoic acid methyl ester (5). Compound **11** (0.461 g, 1.99 mmol) was dissolved in a 50:50 mixture of MeOH and concentrated H₂SO₄ (20 mL total volume) the mixture was allowed to stir overnight. The solvent was evaporated *in vacuo* and then extracted 3x with CH₂Cl₂ yielding a light brown oil (0.342 g, 91%): ¹H NMR (400 MHz, CDCl₃) δ 7.08 (td, *J* = 9.3, 5.2, 1H), 6.81 (td, *J* = 9.2, 2.0, 1H), 6.45 (brs, 1H), 3.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 153.6 (dd, *J* = 249.7, 4.6), 148.7 (dd, *J* = 250.5, 6.4), 140.6 (dd, *J* = 13.9, 3.4), 120.5 (dd, *J* = 9.6, 3.9), 111.8 (dd, *J* = 23.4, 4.1), 110.4 (dd, *J* = 19.1, 15.0), 53.1 (d, *J* = 2.7); IR (neat) 3408, 1751, 1633 cm⁻¹; R_f 0.708 in 50% EtOAc/hexanes; HRMS (ESI) *m* / *z* calcd for C₈H₆F₂O₃ (M + H)⁺ 189.0360, found 189.0358.

3-(6-Chloro-thiazolo[5,4-b]pyridin-2-ylmethoxy)-2,6-difluoro-benzoic acid methyl ester (19). Phenol **5** (0.053 g, 0.282 mmol) was dissolved in 5 mL of dry CH₃CN followed by the addition of Cs₂CO₃ (0.275 g, 0.844 mmol). Compound **2** (0.053 g, 0.242 mmol) was added to the mixture and stirred for 1.5 h at 65 °C. The solution was filtered and the filtrate was concentrated and purified by flash chromatography (100% CH₂Cl₂), yielding a yellow solid (0.056 g, 62%): mp 144-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 2.1, 1H), 8.24 (d, *J* = 2.1, 1H), 7.18 (td, *J* = 9.0, 5.0, 1H), 6.89 (td, *J* = 9.0, 1.8, 1H), 5.49 (s, 2H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 161.7 (d, *J* = 1.3), 156.1, 155.3 (dd, *J* = 248.46, 5.05), 151.1 (dd, *J* = 258.7, 6.6), 146.7, 146.4, 142.4 (dd, *J* = 11.2, 3.8), 130.2, 129.9, 119.5 (dd, *J* = 9.8, 2.8, 1H), 112.4 (dd, *J* = 19.9, 15.6), 111.5 (dd, *J* = 23.4, 4.4), 70.6 (d, *J* = 1.4), 53.1 (d, *J* = 2.3); IR 1732, 1251, 728 cm⁻¹; R_f 0.814 in 50% EtOAc/hexanes; HRMS (ESI) *m* / *z* calcd for C₁₅H₉ClF₂N₂O₃S (M + H)⁺ 371.0068, found 371.0058.

3-Ethoxymethoxy-2,6-difluoro-3-hydroxy-benzaldehyde (13). A solution of 9 (0.945 g, 5.02 mmol) in 30 mL dry THF was cooled to -78 °C. To this solution, n-BuLi (2.2 mL, 5.50 mmol, 2.5M in hexanes) was added dropwise at -78 °C. After the reaction had stirred for 30 min at -78 °C, dry DMF (8.00 mL, 10.0 mmol) was added dropwise and stirred for an additional 30 min at -78 °C. The reaction mixture was warmed to 0 °C and stirred for an additional 30 min. Water was added to the solution and extracted 3x with diethyl ether. The organic layers were combined and dried over MgSO₄. The solvent was evaporated *in vacuo* and the crude mixture was purified by flash chromatography (10 to 30% EtOAc/hexanes) yielding a yellow oil (0.619 g, 57%): ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 7.46 (td, J = 9.1, 5.3 Hz, 1H), 6.92 (t, J = 9.5 Hz, 1H), 5.25 (s, 2H), 3.79 $(q, J = 7.1 \text{ Hz}, 2\text{H}), 1.24 (t, J = 7.1 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 185.4 -$ 183.7 (m), 157.4 (dd, J = 257.2, 4.5 Hz), 153.5 (dd, J = 264.0, 6.0 Hz), 142.2 (dd, J =10.3, 3.8 Hz), 124.6 (dd, J = 10.4, 3.8 Hz), 114.8 (dd, J = 12.1, 8.7 Hz), 111.7 Hz), 111.7 Hz, 111.7 Hz), 1111.7 (dd, J = 12.1, 1 22.2, 4.5 Hz), 95.1, 65.0, 15.1; IR (neat) 3433, 1687 cm⁻¹; R_f 0.689 in 30% EtOAc/hexanes; HRMS (ESI) m/z calcd for $C_{10}H_{10}F_2O_3$ (M - EOM)⁻ 157.0101, found 157.0115.

2,6-Difluoro-3-hydroxy-benzaldehyde (3). The EOM-protected aldehyde **13** (0.564 g, 2.61 mmol) was dissolved in a 50:50 mixture of 6M HCl and MeOH (~30 mL total volume). After 1 h, the solvent was evaporated in *vacuo* yielding a white solid (0.380 g, 92%): ¹H NMR (300 MHz, CDCl₃) δ 10.33 (s, 1H), 7.30-7.22 (m, 1H), 6.96-689 (m, 1H), 5.53 (brs, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 185.2, 156.8 (dd, *J* = 255.2, 4.6 Hz), 150.1 (d, *J* = 255.8 Hz), 140.8 (dd, *J* = 13.3, 3.5 Hz), 123.8, 114.6 – 113.3 (m), 112.3 (dd, *J* = 22.6, 4.3 Hz); IR (neat) 3179, 1675 cm⁻¹; R_f 0.703 in 50% EtOAc/hexanes ; HRMS (ESI) *m* / *z* calcd for C₇H₄F₂O₂ (M - H)⁻ 157.0101, found 157.0115.

N-(2,5-Dichloro-pyridin-3-yl)-acetamide (14). 3-amino-2,5-dichloropyridine (0.316 g, 1.94 mmol) was dissolved in CH₂Cl₂ (30 mL). The mixture was cooled to 0 °C and acetyl chloride (0.275 mL, 3.87 mmol) was added dropwise. This was followed by the addition of (*i*-Pr)₂NEt. (0.70 mL, 4.08 mmol). After 3 h, the solvent was evaporated *in vacuo* and the crude mixture was purified by flash chromatography (100% CH₂Cl₂) yielding a white solid (0.265 g, 65%): mp 120-121°C; ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 2.4 Hz, 1H), 8.08 (d, *J* = 2.4 Hz, 1H), 7.64 (brs, 1H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 142.2, 137.2, 132.3, 131.7, 128.36, 25.1; IR (neat) 3270, 1652, 1507 cm⁻¹; R_f 0.666 in 50% EtOAc/hexanes; HRMS (ESI) *m* / *z* calcd for C₇H₆Cl₂N₂O (M + H)⁺ 204.9935, found 204.9922.

6-Chloro-2-methyl-thiazolo[5,4-b]pyridine (15). Compound **14** (0.227 g, 1.12 mmol) was dissolved in dry toluene (20 mL) followed by the addition of phosphorus pentasulfide (0.369 g, 1.66 mmol). The reaction mixture was stirred overnight at 110 °C. The crude mixture was passed through a plug of silica gel and washed with CH₂Cl₂. The solvent was evaporated *in vacuo* and the crude mixture was purified by flash chromatography (100% CH₂Cl₂) yielding a white solid (0.153 g, 75%): mp 108-109 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.49 (d, *J* = 2.1 Hz, 1H), 8.14 (d, *J* = 2.2 Hz, 1H), 2.86 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 156.9, 147.0, 145.7, 129.8, 129.0, 21.4; R_f 0.703 in 50% EtOAc/hexanes; HRMS (ESI) *m* / *z* calcd for C₇H₅ClN₂S (M + H)⁺ 184.9940, found 184.9929.

EOMO

0

CI

Complete References 7a,b & 10:

7a) Haydon, D. J.; Stokes, N. R.; Ure, R.; Galbraith, G.; Bennett, J. M.; Brown, D. R.; Baker, P. J.; Barynin, V. V.; Rice, D. W.; Sedelnikova, S. E.; Heal, J. R.; Sheridan, J. M.; Aiwale, S. T.; Chauhan, P. K.; Srivastava, A.; Taneja, A.; Collins, I.; Errington, J.; Czaplewski, L. G. *Science (Washington, DC, U. S.)* **2008**, *321*, 1673-1675.

7b) Czaplewski, L. G.; Collins, I.; Boyd, E. A.; Brown, D.; East, S. P.; Gardiner, M.; Fletcher, R.; Haydon, D. J.; Henstock, V.; Ingram, P.; Jones, C.; Noula, C.; Kennison, L.; Rockley, C.; Rose, V.; Thomaides-Brears, H. B.; Ure, R.; Whittaker, M.; Stokes, N. R. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 524-527.

10) Haydon, D. J.; Bennett, J. M.; Brown, D.; Collins, I.; Galbraith, G.; Lancett, P.; Macdonald, R.; Stokes, N. R.; Chauhan, P. K.; Sutariya, J. K.; Nayal, N.; Srivastava, A.; Beanland, J.; Hall, R.; Henstock, V.; Noula, C.; Rockley, C.; Czaplewski, L. *J. Med. Chem.* **2010**, *53*, 3927-3936. X-ray Crystallography and Data Collection. The crystals were obtained by slow evaporation of an acetone solution. A suitable crystal was removed from the vial and mounted on a MiTeGen mount and placed in the CRYO Industries N_2 cold stream of a Bruker SMART Apex II DUO X-ray diffractometer. Data collection was carried out with Mo K α radiation, data reduction was carried out with SAINT, and a correction for absorption was applied using SADABS.¹ The structure was solved with the use of SHELXS97 and refined with SHELXL97.² Hydrogen atoms were added geometrically and refined with a riding model. Crystal data and selected data collection and refinement parameters are presented in Table S1.

^{(&}lt;sup>1</sup>) Bruker AXS, **2010**. APEX2, SAINT, SADABS, TWINABS. Bruker AXS Inc. Madison, Wisconsin, USA.

^{(&}lt;sup>2</sup>) Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112.

Identification code	mn2021		
Empirical formula	$C_{14}H_7Cl_2FN_2O_3$		
Formula weight	341.12		
Temperature	87(2) K		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	PT		
Unit cell dimensions	a = 8.4638(11) Å	α= 63.0260(10)°.	
	b = 9.5592(13) Å	β= 77.877(2)°.	
	c = 10.0336(14) Å	$\gamma = 71.216(2)^{\circ}.$	
Volume	682.97(16) Å ³		
Z	2		
Density (calculated)	1.659 Mg/m ³		
Absorption coefficient	0.501 mm ⁻¹		
F(000)	344		
Crystal size	0.41 x 0.34 x 0.22 mm ³		
Crystal color and habit	colorless block		
Diffractometer	Bruker SMART Apex DUO		
θ range for data collection	2.28 to 29.13°.		
Index ranges	-11≤h≤11, -13≤k≤13, -13≤l≤13		
Reflections collected	9949		
Independent reflections	3652 [R(int) = 0.0232]		
Observed reflections $(I \ge 2\sigma(I))$	3535		
Completeness to $\theta = 29.13^{\circ}$	99.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.898 and 0.821		
Solution method	SHELXS97 (Sheldrick, 2008)		
Refinement method	SHELXL97 (Sheldrick, 2008)		
Data / restraints / parameters	3652 / 0 / 199		
Goodness-of-fit on F ²	1.084		
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0319, $wR2 = 0.0865$		
R indices (all data)	R1 = 0.0327, $wR2 = 0.0871$		
Largest diff. peak and hole	0.542 and -0.392 e.Å ⁻³		

Table S1. Crystal data and structure refinement for Compound 17.