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Web Appendix 1: Demonstration of the Doubly Robust Property 

 

A close examination of the statistical expression for the doubly robust estimator provides an intuitive 

illustration of the doubly robust property. We have adapted and expanded the proof given by Tsiatis 

(p148-149, (1)) to make it more accessible to non-statisticians. Equations have been included, but the text 

that accompanies them is non-technical. We recommend Bang & Robins (2) as an excellent intermediate 

reference and Tsiatis (1) or van der Laan and Robins (3) for an in-depth theoretical treatment of doubly 

robust methods. 

 

Suppose we are interested in the causal effect of an exposure X (taking values 1 or 0 indicating presence 

or absence) on an outcome Y. Using a counterfactual framework, we say that YX=1 and YX=0 are the 

potential outcomes that would be observed in the presence and absence of the exposure, respectively (4).  

In addition, we have measured various baseline covariates (Z) that may be causally related to exposure 

and/or the outcome. All of these variables are further subscripted by i for individuals i=1, . . ., n. For 

illustration, we consider estimation of the difference in means due to exposure or, in other words, the 

mean response if everyone in the population were to be exposed (E(YX=1)) minus the mean response if 

everyone were to remain unexposed (E(YX=0)). One could similarly construct a relative effect measure 

using E(YX=1) / E(YX=0). 
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  (eq 1)  

 

 1, 0,ˆ ˆDR DRμ μ= −    (eq 2) 

 

In (eq 1) for the estimated effect of exposure ˆ( )DRΔ , the first term in each average is an inverse 

probability weighted estimator for E(YX=1) or E(YX=0), respectively.  The second term is the 

“augmentation” that serves both to increase efficiency and support the doubly robust property. In (eq 2) 

for the mean difference due to exposure, 1,ˆ DRμ estimates E(YX=1) and 0,ˆ DRμ estimates E(YX=0). 
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The postulated model for the true PS is represented as e(Zi,β). The expressions m0(Zi,α0) and m1(Zi,α1) are 

postulated outcome regression models for the true relations between the vector of covariates and the 

outcome within the unexposed and exposed, respectively. Here, 0
ˆ ˆ,   and 1ˆβ α α

1

are estimates for the 

parameters 0,   and β α α  in the postulated models. The PS is estimated by substituting the estimate for 

β̂  obtained by logistic regression. Similarly, m0 and m1 are estimated by substituting the estimates for 

0ˆ  and 1ˆα α from the outcome regression models.  
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To demonstrate the doubly robust property, we focus on the estimator for the average response in the 

presence of exposure, E(YX=1), given by 1,ˆ DRμ , (eq 3) [first line of (eq 1)]. When n is large, the sample 

average (eq 3) estimates the population average (eq 4). The first term, E(YX=1), is the average response 

with exposure. If the second term in (eq 4) reduces to zero, the entire quantity (eq 4) will estimate the 

average outcome with exposure. We present two scenarios: 1) a correct PS model but incorrect outcome 

regression model and 2) a correct outcome regression model but incorrect PS model. In each, we describe 

how the second term in (eq 4) reduces to zero. 

 

First, consider the situation where the postulated PS model e(Z,β) is correct but the postulated outcome 

regression model m1(Z,α1) is not. That is e(Z,β)=e(Z)=E(X|Z) but m1(Z,α1)≠E(Y|X=1,Z). In the event that 

we specify the correct model for the PS, we can substitute e(Z) for e(Z,β) but the outcome regression 

model, having been misspecified, does not estimate E(Y|X=1,Z) and so we cannot make this substitution 

between equations (eq 5) and (eq 6).  
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Nonetheless, when we manipulate (eq 6) algebraically (eq 7- eq 10) and invoke the exchangeability 

assumption (eq 10- eq 11), it reduces to zero. 
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Therefore, even if the postulated outcome regression model is incorrect, 1,ˆ DRμ estimates E(YX=1) and 

similarly 0,ˆ DRμ  estimates E(YX=0) such that the difference or ratio estimates the average causal effect of 

exposure.  

 

Next, we consider the situation in which the outcome regression model is correct but the PS model is not. 

That is m1(Z,α1)=E(Y|X=1,Z) but e(Z,β)≠e(Z)≠E(X|Z). In this instance, the second term in equation (eq 

4) for 1,ˆ DRμ  (eq 13) can be rewritten as shown in (eq 14). 
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This term reduces to zero by manipulating the equation algebraically (eq 15- eq 17) and invoking the 

exchangeability assumption (eq 17- eq 18). 
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Thus, equation (4) estimates the quantity of interest, E(YX=1), even though the PS model was 

misspecified. As before, 1,ˆ DRμ  estimates E(YX=1) and similarly 0,ˆ DRμ estimates E(YX=0) such that the 

difference or ratio estimates the average causal effect of exposure. 

 

 [ ] [ ]1 0
ˆ ( ) ( )DR X XE Y augmentation E Y augmentation= =Δ = + − +  (eq 20) 

  (eq 21) 1
ˆ ( ) (DR X XE Y E Y=Δ = − 0 )=
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Web Appendix 2: SAS Macro for Doubly Robust Estimation 

 

The SAS macro described here uses the semi-parametric locally efficient augmented IPW 

estimator (5) that Scharfstein et al (6) noted is doubly robust. The macro can be downloaded 

along with documentation and the sample data from http://www.unc.edu/~mfunk/dr/.  

 

Specifying the models 

The macro requires the analyst to specify a model for the relationship between exposure and 

confounders (the weight model) as well as the models for the relationship between the outcome 

and confounders within strata of exposure. The macro uses the estimated parameters from all 

three models to calculate the estimated effect of exposure. 

 

After loading the macro itself in SAS, the following three lines of code would provide the 

necessary parameters to the macro for estimating the effect of the exposure on the outcome: 

 
%dr(%str(options data=sample desc; 

        wtmodel e=x1 x2 x3   / method=dr dist=bin; 

  model o=x1 x2 x3 x12 / dist=bin;)); 

 

The first line includes the necessary code for invoking the macro followed by the usual data= 

option for identifying the SAS dataset and the descending option to model the probability that 

the exposure=1 in the weight model and that the outcome=1 in the outcome regression model. 

The second line specifies the weight model (or propensity score model) with options indicating 

that the DR method is to be used (method=dr), that the distribution of the exposure is binary 

(dist=bin) and requesting that the propensity score curves stratified by exposure group be 

displayed (showcurves). The third line specifies the covariates to be used in the outcome 

regression models within each exposure group. In addition to the three covariates (Z1, Z2, and 

Z3), we have include an interaction term between Z1 and Z2 (Z12) that was created in a previous 

data step. Because the outcome regression models are conducted within exposure groups, the 

exposure variable itself is not listed as an independent variable here. The model statement also 

includes an option indicating that the outcome has a binomial distribution (dist=bin) which 

results in the use of a logistic model for estimating the effects of the covariates on the outcome. 
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Alternatively, the outcome could be a continuous variable that is normally distributed (dist=n) 

for which we use a set of linear regression models within each exposure group.  

 

Output 

The output of this macro includes the usual information on the three component regression 

models – the weight model as well as the two outcome regression models. The outcome 

regression models are inherently somewhat flexible in that they allow the parameter estimates for 

the effect of each confounder to vary by exposure group (equivalent to placing interaction terms 

into a model between the exposure and every covariate). For instance, if BMI was strongly 

associated with the outcome among the unexposed but not among the exposed, the outcome 

regression models within exposure group would estimate different values for those two 

parameters. The usual SAS output for each outcome regression model is provided so that the 

analyst can identify circumstances where this may be the case. 

 

The macro incorporates diagnostic information about the weight model to assist the analyst in 

evaluating the appropriateness of the model and the resulting weights. The descriptive 

information (n, mean, standard deviation, min, max) for the propensity scores (ps) stratified by 

exposure group (X) is important to review. The degree of overlap of the propensity score values 

can be inspected visually in the histograms stratified by exposure group. When all of the 

confounders are dichotomous (as in this example), this leads to relatively disjoint propensity 

score ‘curves’, but nonetheless there is reasonable overlap with some unexposed individuals 

available to represent the outcomes of all exposed individuals and vice versa. There are no 

combinations of covariates that lead to a p(X=1) or p(X=0) equal to zero. This is known as the 

positivity assumption and is required for propensity score and IPW methods to be valid (7). 

 

Effect estimates 

The estimates of the average causal effect of the exposure appear as the final component of the 

output. In this example, the proportion of the population that is estimated to experience the 

outcome under no exposure (DR0) is the same as the proportion that is estimated to experience 

the outcome with exposure (DR1), or 0.22, indicating no effect of exposure on the outcome 
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(deltaDR=0). The relative effect estimates are also null. (Running this code against the sample 

dataset provided online should produce the same numeric results.) 

 
 

                                         Primary Results            
 
                                               Lower      Upper                     Prob 
        Statistic    Estimate       SE*       95% CL      95% CL      Chi-sq       Chi-sq 
 
        DR 0          0.22000     .            .          .                  .     . 
        DR 1          0.22000     .            .          .                  .     . 
        Delta DR      0.00000    0.009537    -0.01869    0.01869    1.5709E-16    1.00000 
        Log RR        0.00000    0.043352    -0.08497    0.08497     1.572E-16    1.00000 
        Log OR        0.00000    0.055579    -0.10893    0.10893     1.572E-16    1.00000 
        RR            1.00000    NA           0.89679    1.11509     1.572E-16    1.00000 
        OR            1.00000    NA           2.45172    3.04984     1.572E-16    1.00000 
 
 
*NOTE: Estimated standard errors assume all models are correctly specified 
 

 

These estimates can be interpreted as the difference or relative effect due to exposure were the 

entire population to have been exposed versus unexposed. In the case of a continuous outcome, 

the effect of interest is generally the absolute difference in the outcome (mean difference or 

deltadr). In the case of a dichotomous outcome, the effect of interest might be on the absolute 

scale (risk difference or deltadr) or on the relative scale (relative risk or odds ratio). All three are 

provided for a dichotomous outcome. 

 

Bootstrapped standard errors and confidence intervals 

As noted above, the estimated standard errors assume that both models have been correctly 

specified and are, therefore, not doubly robust. Thus, we strongly recommend the use of 

bootstrapping to obtain appropriate standard errors and confidence intervals for these estimates. 

The following sample code runs the same analysis as above with the addition of bootstrapping. 

 
%dr(%str(options data=sample desc bootstrap=1000 alpha=0.05 bootout=bs_results; 

wtmodel e=x1 x2 x3   / method=dr dist=bin; 

model o=x1 x2 x3 x12 / dist=bin;)); 

 

Bootstrap=n requests that bootstrapped standard errors and confidence intervals be estimated 

based on n complete resamples of the data. Alpha=0.05 indicates that the confidence limits and p 

values should be based on a two-sided alpha of 0.05. The results from the analysis of the 
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bootstrapped resamples can be saved for further examination by specifying the 

bootout=<dataset_name> option.  

 

The output from this analysis appears below. Note that the numerical results obtained by running 

this code against the sample dataset online may differ slightly from those shown due to 

variability in bootstrapped resamples. 

 
 
                              Means and Empirical Confidence Limits 
                                   Bootstrapped Iterations=1000 
 
                                 Empirical      Lower      Upper                     Prob 
        Statistic    Estimate       SE         95% CL      95% CL      Chi-sq       Chi-sq 
 
        DR 0          0.21973    0.006746       .          .                  .     . 
        DR 1          0.21982    0.006478       .          .                  .     . 
        Delta DR      0.00009    0.009185     -0.01800    0.01800    1.6937E-16    1.00000 
        Log RR        0.00047    0.041792     -0.08191    0.08191    1.6916E-16    1.00000 
        Log OR        0.00058    0.053566     -0.10499    0.10499    1.6924E-16    1.00000 
        RR            1.00047    NA            0.90034    1.11070    1.6924E-16    1.00000 
        OR            1.00058    NA            2.46043    3.03647    1.6924E-16    1.00000 
 
 
 
                          Medians and Percentile-Based Confidence Limits 
                                   Bootstrapped Iterations=1000 
 
                                                      Lower      Upper 
                           Statistic    Estimate     95% CL      95% CL 
 
                           DR 0          0.21958     0.20763    0.23378 
                           DR 1          0.21987     0.20726    0.23259 
                           Delta DR     -0.00002    -0.01824    0.01804 
                           Log RR       -0.00008    -0.08225    0.08095 
                           Log OR       -0.00010    -0.10581    0.10436 
                           RR            0.99992     0.92104    1.08432 
                           OR            0.99990     0.89959    1.11000 
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Web Appendix 3: Data Generation for Monte Carlo Simulations 
 

We generated three independent variables (Z1, Z2, Z3). Z1 and Z2 were both normally distributed with 

mean=0 and standard deviation=1. Z3 was a dichotomous variable generated by drawing a random 

number from a uniform distribution between 0-1 and assigning the value of Z3 to 1 if the random number 

was <=0.3 and otherwise setting it to 0. With these independent variables defined, we then generated the 

exposure (X) as a function of these three variables. The true propensity score model was 

P{X=1|Z]=(1+exp{−(β0 + β1Z1 + β2Z2 + β3Z3)})−1 where β0=1.5, β1=1, β2=-2, and β3=1. In order to 

dichotomize the exposure variable, SAS drew a random number R from the uniform distribution between 

0-1. If [p(X=1|Zi)+ R] was <0.91, X was set to 1. Otherwise, it was set to 0. The resulting exposure 

variable had a p(X=1) = 0.2. The outcome was a continuous variable (Y), generated as a function of Z1 

and Z3, but not X or Z2. Specifically, E(Y)= β1Z1 + β3Z3 + β4Z4 where Z4 was a randomly drawn number 

from a normal distribution with mean 0 and standard deviation of 1, β1=1, β3=1, and β4=2. The resulting 

outcome variable had a mean of 0.3 and standard deviation of 2.3. 

 

 
Propensity score model 

LogitP(X=1|Z)= 

Outcome regression models 

E(YX=1)= & E(YX=0)= 

True models 1.5 + Z1 – 2*Z2 + Z3 Z1 + Z3 + 2*Z4 

Scenario 1 β0 + β1Z1 + β3Z3 β0 + β1Z1 + β3Z3 

Scenario 2 β0 + β1Z1 β0 + β1Z1 + β3Z3 

Scenario 3 β0 + β1Z1 + β3Z3 β0 + β1Z1 
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