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Supplementary Methods: 

We reanalyzed data from a previous publication [S1] consisting of 83 single neurons 

recorded over 47 behavioral sessions from two monkeys performing a 4-armed bandit 

task. As in that work, all isolated units collected were analyzed, with no selection criteria 

for collection. Once again, we fit three behavioral models to monkeys’ choices each day: 

a Bayesian greedy model, a heuristic model, and a reduced Kalman filter [S1]. However, 
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in our reanalysis, we also fit a fourth model based on a full Kalman filter with uncertainty 

in outcomes. Despite the fact that outcomes in our task had no variance in addition to the 

random walk, fitting this expanded model allowed for the possibility that monkeys 

perceived the task in this way.  

 

Kalman Filter Model 

We implemented a Kalman filter [S2, S3] that performed online Bayesian learning in our 

task. In this model, all targets values were updated each trial according to a drift model: 
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where μi and σi are the mean and standard deviation of the posterior estimate of each 

option’s value, ζ is a central tendency of options to drift toward an asymptotic value, θ, 

and D reflects the growing uncertainty of an unchosen target’s value over time due to 

drift.  

In addition, for the chosen target, we calculated learning parameters as follows: 
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where r is the outcome of the current trial, μi is the mean of option i, and μ0 and σ0 are the 

mean and standard deviation parameters for the target value post-jump. As usual, δ is the 

reward prediction error and α the learning rate. 

We then updated the parameters of the chosen target: 
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Thus, each trial yields a single δ and α, along with vectors μ and σ.   

Finally, we calculated the likelihood of choosing each option according to a softmax 

model with “inverse temperature” β and intrinsic target biases γi: 
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Model fitting 

As in [1], we fit models using a maximum likelihood procedure via custom scripts 

written using the Matlab Optimization Toolbox. For each behavioral session, we fit the 

Kalman filter (parameters: β, θ, ζ, μ0, σ0, D, γi) using N=5 random starting points in the 

search space, selecting the set that produced maximum log likelihood. We then compared 

behavioral models using the Akaike Information Criterion (AIC) [S4]: 

AIC = −2LL + 2k , 

with LL the log likelihood of behavioral choices and k the number of fitted parameters. 

This we transformed for comparison purposes to an Akaike weight: 
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where Δ i = AICi −min{AIC}. Since wi∑ =1, wi may be thought of as a percentage of 

evidence in favor of model i.  

Neuronal analysis 

Following [S1], we examined the relationship between firing in both the decision and 

post-reward epochs of the task using partial correlations that controlled for the effect of 

reward (both chosen and mean reward across option). Partial correlations control for false 



positives associated with covariance between independent variables, and therefore serve 

as a more conservative estimate of true correlation. “Variance chosen” refers to the 

standard deviation of the posterior distribution of the value of the chosen option (σ 

above). “Mean variance” refers to the mean of this quantity across all four options. In 

Figure 2, we report the results of this analysis in terms of both numbers of significantly 

correlated neurons and the mean absolute value of correlation for this subset of neurons.  
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