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ABSTRACT

Recent structural analyses of genomic RNAs from
RNA coliphages suggest that both well-determined
base paired helices and well-determined structural
domains that are identified by 'energy dot plot'
analysis using the RNA folding package mfold, are
likely to be predicted correctly. To test these observa-
tions with another group of large RNAs, we have
analyzed 15 ribosomal RNAs. Published secondary
structure models that were derived by comparative
sequence analysis were used to evaluate the predicted
structures. Both the optimal predicted fold and the
predicted 'energy dot plot' of each sequence were
examined. Each prediction was obtained from a single
computer run on an entire ribosomal RNA sequence.
All predicted base pairs in optimal foldings were
examined for agreement with proven base pairs in the
comparative models. Our analyses show that the
overall correspondence between the predicted and
comparative models varies for different RNAs and
ranges from a low of 27% to a high of 70%, with a mean
value of 49%. The correspondence improves to a mean
value of 81% when the analysis is limited to well-
determined helices. In addition to well-determined
helices, large well-determined structural domains can
be observed in 'energy dot plots' of some 16S
ribosomal RNAs. The predicted domains correspond
closely with structural domains that are found by the
comparative method in the same RNAs. Our analyses
also show that measuring the agreement between
predicted and comparative secondary structure
models underestimates the reliability of structural
prediction by mfold.

INTRODUCTION

Two main methods are currently employed to predict RNA
secondary structure; comparative sequence analysis (1-3) and
free energy minimization (4-10).The former method proceeds
from the assumption that structure is much more highly

conserved than sequence during evolution. Base pairs are inferred
by finding positions in aligned sequences that co-vary so as to
conserve base pairing potential. In contrast, free energy minimiz-
ation requires only a single sequence and proceeds automatically
without the labor-intensive steps of iterative alignment and base
pair detection that comparative sequence analysis requires.The
major problem with energy minimization has been the lack of
reliability of the predictions.
Coupling the suboptimal folding algorithm of Zuker (9,11)

with the energy rules of Turner and colleagues (12-14) has led to
impressive improvements in RNA secondary structure predic-
tion. However, despite the dramatic improvement in the overall
quality of prediction, variability is observed in the reliability of
prediction among different sequences, as well as within different
regions of the same sequence. Thus a user confronted with the
structural prediction for a new RNA sequence would like to be
able to assess the reliability of a particular prediction. The
analyses presented here show that helices and structural domains
that are well determined are predicted more reliably than helices
and structural domains that are poorly determined. The identifica-
tion of well-determined structures is generally done by viewing
'energy dot plots' by eye. However, we describe a first step
towards quantifying our subjective notion of well-determined
base pairs and provide a small computer program for this purpose.

MATERIALS AND METHODS

We have analyzed 15 small subunit rRNAs from bacteria (14) and
chloroplasts (1). The names and accession numbers are given in
Table 1. Published structures obtained by comparative sequence
analysis were used to evaluate the predicted foldings (15-17).
Only base pairs that have been proven by co-variance were used
in the analysis.
RNA folding predictions use programs in version 2.2

(December 1992) of the mfold package (9,11,18,19). New
software has been written to create and analyze energy dot plots.
The energy dot plots used in these analyses show base pairs in
structures within 12 kcal from minimum folding energies. For this
manuscript, a new type of dot plot, called an overlaid energy dot
plot, was created. The overlaid dot plots afford a view of how
close the optimal folding(s) is (are) to the comparative model and
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whether or not base pairs in the comparative model are predicted
to be well-determined. The program that creates the overlaid dot
plot is available from the first author upon request.

Table 1. Ribosomal sequences with GenBank accession nos

Sequence Accession no.

Anacystis nidulans 16S X00512

Bacillus subtilis 16S K00637, M10606
Desulfovibrio desulfuricans 16S M34113

Escherichia coli 16S JO 1695

Heliobacterium chlorum 16S M 11212

Haloferax volcanii 16S K00421

Mycoplasma gallisepticum 16S M22441
Methanospirillum hungatei 16S M60880

Thermococcus celer 16S M21529
Thermoproteus tenax 16S M35966

Thermomicrobium roseum 16S M34115

Thermoplasma acidophilum 16S M32297, M20822

Thermus thermophilus 16S X07998

Thermotoga maritima 16S M21744

Zea mays chloroplast 16S Z00028

The rRNA sequences were obtained from the RDP database maintained at the
University of Illinois (15).

Although the dot plots can be analyzed visually to determine
what optimal base pairs are 'well-determined' in the sense of
having few competitors in suboptimal foldings, it is useful to have
a quantitative measure for this concept and we have devised a
measure which we call H-num. It derives from an earlier function
called P-num (9,11). The P-num function was introduced to
describe how 'well-determined' individual nucleotides are in
terms of their predicted status in a secondary structure. In a
molecule of n nucleotides and for a given energy dot plot,
P-num(i) is the total number of dots in the ith row and column of
the dot plot. In an unfiltered dot plot this is the same as the total

number of base pairs that can be formed with the ith nucleotide
in all possible structures within the prescribed degree of
suboptimality. Proceeding from here, we can defme the H-num
function as follows. For a base pair between ribonucleotides i and
j, let H-num(ij) = P-num(i) + P-num(j) - 1. This is the total
number of dots in the ith andjth rows and columns of the dot plot.
H-num(ij) is at least 1 if i:j is a valid base pair within the
prescribed free energy increment. Thus H-num(ij) counts the
total number of base pairs in all secondary structures within the
prescribed free energy increment that contain nucleotides i orj.
The H-num value for a helix is defined as the average H-num
value for the base pairs in that helix. A helix with a low H-num
value is said to be 'well-determined'. The definition of low is
subjective. For these studies helices with a value .60 are
considered well-determined. The cut-off of 60 was obtained by
visually inspecting the ribosomal dot plots and choosing the
maximum H-num value for which all helices appear to be
well-determined by eye. A more rigorous approach will be
developed in future studies (see Discussion). The current program
forH-num analysis is available from the first author upon request.

RESULTS

Well-determined helices are well predicted

The number of well-determined helices that are found in any
given folding varies for different RNAs. The variation among 15
ribosomal sequences is shown in Table 2. Both the number and
the percent of well-determined helices are shown. The values
range from a low of two (2%) well-determined helices for
Anacystis nidulans 16S rRNA to 75 (85%) well-detenrnined
helices for 16S rRNA from Thermnococcus celer, with a mean
value of 27 (27%). The predicted free energy (AG) for the optimal
folding of each of the RNAs is shown in the last column of the
table. Five of the rRNAs shown in the table are found in
thermophilic bacteria. These RNAs have a large number of
well-determined helices and their RNA secondary structures are
predicted to be unusually stable.

Table 2. The percent of well-determined helices found in the predicted foldings of small subunit ribosomal RNAs

Sequence Total Well-determined Percent AG (kcallmol)
Anacystis nidulans 16S 105 2 2 -417.2
Bacillus subtilis 16S 150 8 5 -455.1
Desulfovibrio desulfuricans 16S 112 8 7 -437.6
Escherichia coli 16S 111 7 6 -434.6
Heliobacterium chlorum 16S 106 7 7 -453.7
Haloferax volcanii 16S 98 53 54 -515.1
Mycoplasma gallisepticum 16S 148 7 5 -349.4
Methanospirillum hungatei 16S 101 47 47 -458.6
Thermus thermophilus 16S 112 38 34 -585.0
Thermococcus celer 16S 88 75 85 -656.2
Thermoproteus tenax 16S 98 59 60 -704.8
Thermomicrobium roseum 16S 116 19 16 -566.7
Thermoplasma acidophilum 16S 94 44 47 -482.3
Thermotoga maritima 16S 112 24 21 -621.4
Zea mays chloroplast 16S 109 4 4 -432.2

The last column of the table shows the predicted AG for the optimal folding of each rRNA sequence.
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Table 3. The agreement between base pairs found in optimal foldings and those in comparative models of small subunit ribosomal RNAs

Sequence Total base pairs Well-determined base pairs

Predicted Comparative Agreement(%) Total Agreement (%) Improvement (A%)

Anacystis nidulans 16S 482 412 244 (51) 10 6 (60) 9

Bacillus subtilis 16S 682 435 285 (42) 61 59 (97) 55

Desulfovibrio desulfuricans 16S 518 426 212 (41) 44 38 (86) 45

Escherichia coli 16S 512 440 239 (47) 53 52 (98) 51

Heliobacterium chlorum 16S 496 422 210 (42) 46 38 (83) 40

Haloferax volcanii 16S 492 417 342(69) 314 252(80) 11

Mycoplasma gallisepticum 16S 670 415 246 (37) 40 35 (87) 51

Methanospirillum hungatei 16S 492 414 299 (61) 242 182 (75) 14

Thermus thermophilus 16S 532 431 249 (47) 197 163 (83) 36

Thermococcus celer 16S 496 427 310 (63) 431 302 (70) 8

Thermoproteus tenax 16S 524 439 296 (57) 345 253 (73) 17

Thermomicrobium roseum 16S 542 427 234 (43) 90 65 (72) 29

Thermoplasma acidophilum 16S 486 422 276 (57) 262 205 (78) 21

Thermotogamaritima 16S 527 443 300(57) 130 100(77) 20

Zea mays chloroplast 16S 504 407 136 (27) 24 23 (96) 69

The agreement between all predicted base pairs amd base pairs in the comparative model is juxtaposed with the agreement between well-determined predicted base
pairs and base pairs in the comparative model. Well-determined base pairs are defined as base pairs in well-determined helices, i.e. helices with h-num values <60.

The agreement between the optimal predicted folding of each
16S rRNA and the comparative model of its secondary structure
is given in the first three columns in Table 3. Base pairs rather than
entire helices were used for the comparison, because predicted
helices often have more base pairs than comparable helices in the
comparative models. The observed agreement between the
predicted optimal foldings and the comparative models ranges
from 27% for 16S rRNA from Zea mays to 70% for 16S rRNA
from Haloferax volcanii, with a mean agreement of 49%.
Two measures can be used to determine the agreement between

the predicted and comparative models. One gives the fraction of
base pairs or helices in the comparative model that are found by the
algorithm (18,20). The second measure gives the fraction of base
pairs predicted by the algorithm that are found in the comparative
model. The latter measure gives a lower estimate of the reliability
of mfold prediction, because ofthe number ofunpaired nucleotides
in the comparative models. It was used for the current analysis,
because we are interested in evaluating the reliability of structural
prediction for RNAs of unknown secondary structure.
The improvement in prediction that is achieved by restricting

the analysis to well-determined helices (helices with an H-num
value <60) is shown in the last three columns ofTable 3. The base
pairs shown in column 4 are those found in the well-determined
helices of Table 2, column 2. Agreement with the comparative
models is shown in column 5. The values range from 60% for
A.nidulans to 97% for Bacillus subtilis. On average, 81% of
well-determined helices agree with matching helices in the
comparative models. The average improvement (column 6) is
32%. Overall secondary structure prediction is more reliable for
RNAs with many well-determined helices (columns 3 and 4). As
a result, these RNAs show less relative improvement (column 6).
A more detailed view of the improvement in prediction that is

achieved when the analysis of RNA secondary structure is

confined to well-determined helices is afforded in Figure 1.
Optimal helices were sorted by increasing H-num value, from
'best-determined' to 'poorest-determined'. For each H-num
value, the percent of predicted base pairs in agreement with the
comparative model was plotted. Examination of the plots reveals
that the number ofpredicted helices that are in agreement with the
comparative model always decreases with increasing H-num and
shows, once more, that well-determined helices are predicted
more reliably than poorly-determined helices.
The H-num plots that are shown were selected to illustrate the

variation in well-determined and/or well-predicted structure in
different 16S sequences. In Figure IA (Tceler), the majority of
predicted helices are clustered in the left half of the plot. They are
relatively well-determined and are relatively well-predicted. In
contrast, most helices are 'poorly-determined' and poorly
predicted in Figure lB (A.nidulans) and cluster in the right half
of the plot. The plot shown in Figure IC (Escherichia coli) has
intermediate properties.

Use of the comparative models lead us to underestimate
of the reliability of structural prediction by mfold

The comparative models used for testing the reliability of the
predicted optimal foldings derive from rigorous analysis of
co-variance and provide the best structural models currently
available with which to test the quality of mfold prediction (3).
Nonetheless, a strict comparison of the two types of structural
models leads us to underestimate slightly the reliability ofRNA
secondary structure prediction by mfold, because of inherent
differences in the predicted and comparative models. mfold
predicts the potential structure ofRNAs in solution in the absence
of protein. Secondary structures deduced from comparative
analysis are structures conserved in evolution because of their
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Figure 1. H-num plots for three 16S rRNAs. At each H-num, the percent of optimal base pairs that are in agreement with base pairs in the helices of the comparative
model are plotted. The plots are cumulative, with each point representing all helices up to that point. (A) Tceler 16S rRNA, (B) Anidulans 16S rRNA, (C) Ecoli 16S
rRNA.

functional significance in living organisms. Thus the models
could differ if predicted structures do not have functional
significance and are, therefore, not conserved in related RNAs or
if conserved structures in the comparative models are not stable
in solution without bound proteins. The models may also differ
if the nucleotide sequence of a helix is strictly conserved and its
existence cannot be proved by comparative analysis.
Some differences that are found among well-determined

helices and those in the comparative models are shown in Figure
2 and Table 4. The structures shown are from the optimal
prediction of H.volcanii 16S rRNA; in all cases predicted helices

contain more base pairs (shown boxed) than are found in the
comparative model. Most of the differences that have been
observed fall into two classes. (i) One or more additional base
pairs are present at the beginning or the end of the helix. For
example, in the helix U548-G568, two ofthe eight predicted base
pairs are missing. The H-num value for this helix is 2.9 and the
agreement with the comparative model for this helix is 75%.
Thermodynamic studies with small model compounds support
the formation of additional base pairs in regions of this type (14).
Approximately 68% of all well-determined helices in the
H.volcanii 16S prediction that differ from helices in the
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Figure 2. Comparison of the predicted and comparative secondary structure
models for four well-determined hairpins in the optimal predicted folding of
H. volcanii 16S rRNA. Boxed base pairs correspond to single-stranded regions
in the comparative model. The arrows at U224 and U262 indicate that these
nucleotides form a U:U pair in the comparative model.

comparative model are of this type. (ii) Longer base paired
segments or entire helices are missing from the comparative
model. In the lower region of hairpin C, for example, four base
pairs are missing. The base pairs are conserved among ribosomal
RNA but exhibit no co-variations, thus they are not proved by
comparative analysis and are scored as differences in our
analyses.

Table 4. Details of the agreement between predicted and comparative
secondary structure models for several well-determined hairpins in Halerofax
volcanii 16S rRNA

Helix Helix length Agreement H-num

548-568 8 6 2.9
407-433 1 2 6 4.8
537-578 8 8 5.1
295-316 8 6 6.6
231-253 8 8 10.1
218-266 8 3 11.5
226-256 3 3 13.0

Two-dimensional models for these hairpins are shown in Figure 2. The nucleo-
tide numbers given correspond to the first and last nucleotides of each helix.

A rare difference is illustrated in the lower helix of hairpin A.
The helix is formed by seven canonical base pairs and one G:U
pair. The comparative model for this region is primarily
single-stranded; it has two canonical base pairs and, in addition,
a non-canonical U:U pair (indicated by arrows in the figure).
While comparative studies provide compelling evidence for
many non-canonical base pairs in ribosomal RNAs (3), they are
not included in mfold. In the current example, allowing U:U pairs
would not alter the predicted structure for the helix, since the five
missing canonical pairs are likely to form in solution.

If the differences between the comparative and predicted
models like those illustrated in Figure 2 are ignored, 95% of

well-determined helices in the optimal folding of H.volcanii 16S
rRNA would be reliably predicted. This is up from the level of
80.3% given in Table 3. A similar computation can be made for
all of the ribosomal RNAs analyzed in the current study. Thus
measuring the agreement between the predicted and the compara-
tive models may underestimate the magnitude of reliable
prediction by mfold.

The prediction of large structural domains

Large well-determined structural domains are identified by visual
inspection of an 'energy dot plot'. These plots show suboptimal
output from the RNA folding algorithm (9). A dot in row i and
columnj of the plot represents a base pair between the ith andjth
ribonucleotides in a sequence. The plot shows the superposition
of all optimal and close to optimal foldings in a single figure.
These plots often contain a mixture of clear regions and cluttered
regions. Clear regions define well-determined structural domains
in the optimal folding. Nucleotides within these regions do not
interact with other regions ofthe molecule in suboptimal foldings.
Cluttered regions indicate portions of the molecule that have the
potential to form numerous alternative structures. Predicted
structures in the optimal folding that are located in cluttered
regions of the plots are considered to be poorly determined.
Three 'overlaid energy dot plots' are shown in Figure 3. Like

standard 'energy dot plots', they show base pairs in the predicted
optimal foldings (lower left triangle), as well as all possible base
pairs in all possible foldings within 12 kcal of the optimal
predicted foldings (upper right triangle). In addition, base pairs
from the comparative models are overlaid on each plot as larger
red and blue dots.
Some qualitative features and differences are immediately

apparent among the energy dot plots. The plot ofE.coli 16S rRNA
is the most cluttered and seems to have the greatest overall density
of dots. The plot of H.volcanii 16S rRNA has one large clear
rectangular area. The plot of Tceler 16S rRNA is unusually
sparse, with large clear areas over much of the plot.
Two structural domains are present in the 'energy dot plot' of

H.volcanii 16S rRNA (Fig. 3B). The large clear rectangle with
corners at (1,494), (1,1474), (1474,494) and (494,494) shows that
nucleotides in the region 1-494 do not interact with nucleotides
from the remainder of the molecule. The structure formed within
nucleotides 1-494 is well-determined; secondary structures
within the domain formed by nucleotides 494-1474 are poorly-
determined. The entire 'energy dot plot' for Tceler 16S rRNA
(Fig. 3C) is unusually well-determined. Four structural domains,
extending from nucleotide 1 to 498,499 to 868, 869 to 1352 and
1353 to 1486 can be identified.
Of the 15 ribosomal sequences that have been analyzed in this

study, five have well-determined structural domains. The nucleo-
tide positions of these domains have been compared with the
position of comparable domains in the respective comparative
models (Table 5). In three of them (H.volcanii, Tceler and
Thermoproteus tenax) the domains in the predicted and compara-
tive models coincide. For the remainder, the nucleotide positions
of the structural domains correspond less well to the comparative
models, although the magnitude of the differences that are
observed is small.
The position of red and blue dots within each dot plot (Fig. 3)

provides additional information about the agreement between the
predicted and comparative models In general, the preponderance
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of correctly predicted helices (blue dots) are located along the 200 400 600 800 1000 1200 1400
diagonal of the plot, where short local hairpins are situated. Red ASi
dots, indicating regions of the phylogenetic model that are .- A 'I.
missing from predicted folding, are more often long-range and are |i, 200
usually located in regions of the plot that are poorly-determined.
The reliability of structural prediction within well-determined ,-;W'7

structural domains is better than in poorly determined regions.
However, the level of improvement observed is variable and _S:
generally depends on the number of well-determined helices 60
within the structure. Structures within domain m of the Tceler
rRNA provide an exception to this generalization. Although 96%
of the helices in domain III are well-determined, only 58% are in
agreement with structures in the comparative model. Consistent
with this, we note that structural prediction for domain Ill agrees
poorly with the comparative models for domain Im in all ribosomal
sequences that we have studied. The reason for these discrepancies, 1200
as well as their significance both for the comparative and predicted
models, remains to be explored. It should also be noted that we do
not find consistent well-determined domains or local hairpins
throughout the 15 ribosomal sequences that have been examined. _

DISCUSSION 200 400 600 800 1000 1200 1400
The results presented here show that the computer program mfold A
predicts RNA secondary structures more reliably for helices that 200
are 'well-determined' than for helices that are 'poorly-deter-
mined'. In addition, the overall prediction of RNA secondary
structure is more reliable for RNAs with many well-determined ' .
helices. The results also show that well-determined structural |' . W M;:,-;
domains correspond to structural domains in the comparative . * 600
models. Structures within these domains are generally predicted
more reliably than structures in other regions of the RNA.
As shown in Table 3, only 47% of the predicted helices in E.coli .14' 80

16S rRNA are in agreement with the comparative model.
Escherichia coli 16S rRNA has often been used as a standard with ,
which to determine the reliability of prediction for large RNAs,
because it was the first large RNA whose secondary structure was
well established. The E.coli 16s rRNA dot plot (Fig. 3A) is dense 1200

and contains few well-determined helices. In view of the
correlation that has been observed between the overall quality of
structural prediction and the appearance of the 'energy dot plots',
it is not surprising that the overall prediction for this RNA is
relatively poor compared with other rRNAs (Table 3). These 200_40_600800 _100 _120_140
results suggest that the reliability of prediction for E.coli RNA C
need not indicate the reliability ofprediction for other large RNAs
of unknown structure. 200

-400

Flgure 3. 'Overlaid energy dot plots' of three rRNAs. Predicted optimal base
pairs are plotted as black dots and are shown both in the lower left and upper
right triangles of the plot. Suboptimal base pairs are shown in grey in the upper
right triangle of the figure, with darker to lighter dots corresponding to 80
suboptimal foldings within 0-4,4-8 and 8-12 kcal/mol respectively from the
computed minimum energies. The base pairs of the comparative model are
plotted as large red or blue dots in the upper right triangle. Blue dots represent low
base pairs found both in the comparative model and in an optimal folding. Red
dots represent base pairs in the comparative model that are missing from the
predicted optimal foldings. In addition, the plots have been annotated with 1200
horizontal and vertical black lines at domain boundaries.The energy dot plots
were filtered. All possible optimal base pairs are shown, but only suboptimal
helices of23 bp are plotted. This eliminates isolated and doublet base pairs in 140
suboptirnal structures. (A) E.coli 16S rR;NA, () H.volcanii, (C) celer._
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Table 5. Predicted structural domains versus comparative models

Sequence

Anacystis nidulans 16S

Bacillus subtilis 16S

Desulfovibrio desulfuricans 16S

Escherichia coli 16S

Heliobacterium chlorum 16S

Haloferax volcanii 16S

Mycoplasma gallisepticum 16S

Methanospirillum hungatei 16S

Thermococcus celer 16S

Thermoproteus tenax 16S

Thermomicrobium roseum 16S

Thermoplasma acidophilum 16S

Thermus thermophilus 16S

Thermotoga maritima 16S

Zea mays chloroplast 16S

None

None

None

None

None

1-494

1-494

1-584

1-554

1-487

1-478

1-498

1-498

1-515

1-515

None

None

None

None

None

495-1474

495-1474

585-939

555-915

488-882

488-856

499-853

499-853

516-1370

516-1370

940-1323

916-1371

883-1466

857-1466

854-1352

854-1352

1371-1503

1371-1503

1324-1519

1372-1519

1353-1486

1353-1486

For each rRNA, the nucleotide positions of predicted structural domains are shown in the first row and nucleotide positions of structural domains taken from the
corresponding comparative model are shown in the second row.

The studies with ribosomal RNAs support our published
analysis by energy dot plot of the sequence of coliphage QoRNA
(21). In the coliphage study we reported the presence of five
well-determined structural domains that were consistent in
position with unusually stable structural features that are
visualized by electron microscopy in Q, RNA. In the coliphage
studies we also reported the presence of numerous local
well-determined hairpins that were consistent in structure with
our studies in solution by chemical modification (22). Experi-
mental studies with native and mutant coliphage RNAs suggest
that some of the potential structural heterogeneity that is
visualized in energy dot plots correlates with helix stability; that
weak structures are more likely to vary in conformation (21;
unpublished studies). Energy dot plots of the ribosomal RNAs
have many poorly-determined regions. The relative stability of
individual structural features within the comparative secondary
structure models for ribosomal RNAs have not been measured. It
remains to be seen whether any structures in rRNAs that are
poorly-determined by energy dot plot analysis are less stable than
well-determined structures.
Le and colleagues (23-25) identify their equivalent of 'well-

determined' regions by finding segments of an RNA molecule
where the folding energy is much less than expected at random.
These methods cannot determine separate folding domains in
large molecules, nor can they separate 'well-determined' regions
from poorly determined ones. Our point of view is different,
because it is clear to us that random RNA will have structure and
that parts may indeed turn out to be 'well-determined' by our dot

plot analysis. We would expect such structures to form reliably in
solution if the random RNA could be synthesized. In the folding
of50 randomly generatedRNA sequences of size 1500 with equal
expected A:C:G:U content (M. Zuker, unpublished results) we
found many 'well-detenmined' regions.
Our current folding model allows only the six canonical and

G:U pairings. Although these account for the vast majority of
base pairs derived by comparative sequence analysis, there is
clear evidence for others, especially A:G, A:C, A:A, C:C, G:G
and U:U (3,26,27). Although these could be incorporated into the
current folding program, there is still a lack of sufficient
measurements to quantify the effects of all the different base pair
stackings that would become possible. In addition, results for
selected pairs of mismatches within helices containing otherwise
canonical base pairs indicate that simple nearest neighbor rules
are insufficient to explain the resulting stabilities (27). Ultimately,
we would expect better results with a folding model that allowed
these non-canonical base pairs.
The comparative results (Fig. 3), as well as unpublished

studies, show that long-range base pairs are harder to predict
reliably than short-range ones. One reason for this may be that
mfold fails to predict many multi-branched loops correcfly, in part
because of the simplistic assumptions used in computing their
energies. There is both comparative (1,26) and experimental (28)
evidence for co-axial stacking of adjacent helices in multi-
branched loops. The experimental evidence is compatible with a
co-axial stacking interaction roughly equivalent to nearest
neighbor stacking within helices. The reordering of groups of
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optimal and suboptimal foldings predicted by mfold based on
re-evaluation of the energy of multi-branched loops to include
possible co-axial stacking and the use of the Jacobson-Stockmayer
theory (29) improves prediction of RNA structure (28). We
expect that the incorporation of more realistic energy rules in
multi-branch loop energy computation would improve RNA
secondary structure prediction. What is not clear at this time is
whether the inclusion of non-canonical base pairs and better
energy rules for multi-branched loops in mfold will improve the
prediction of 'well-defined' domains.

In addition to improving the energy rules for long-range
structure prediction, studies are underway to analyze a larger set
of 16S and 23S rRNAs. Although the studies described here
support our early report regarding the significance of well-
determined structural domains in genomic RNA from the RNA
coliphage Q3, additional analyses of a larger set of both 16S and
23S rRNA are needed in order to quantify the reliability of
prediction for large domains. We note that large domains consist
of both local and long-range interactions. In view of the
uncertainties in long-range prediction, we anticipate that the
reliability of domain prediction will correlate with the number of
well-determined local hairpins within the domain. Although the
predicted energy dot plots of many RNAs lack well-determined
domains, they are found in the predicted plots from a variety of
organisms, including genomic animal virus RNAs and eukaryotic
mRNAs (unpublished studies). The broad distribution of these
structures in RNAs from a variety of organisms encourages us to
undertake more extensive analyses of their properties.
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