Supporting Information For:

An Efficient Synthesis of γ-Hydroxy-α,β-unsaturated Aldehydic Esters of 2-Lysophosphatidylcholine

Jaewoo Choi, James M. Laird and Robert G. Salomon*

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078

Contents

Title	S 1
Contents	S1 S2
General methods	52 S4
¹ H NMP (CDCL) spectrum of Ethyl (E) 4.7 dioyobent 5 enoste (8)	55
¹³ C NMR (CDCl ₃) spectrum of Ethyl (E)-4,7-dioxollept-3-enoate (8)	55
C NMR (CDCI ₃) spectrum of Etnyl (E)-4, /-dioxonept-5-enoate (δ)	55
¹ H NMR (CDCl ₃) spectrum of Ethyl (E)-7,7-dimethoxy-4-oxohept-5-enoate (9)	S6
13 C NMR (CDCl ₃) spectrum of Ethyl (<i>E</i>)-7,7-dimethoxy-4-oxohept-5-enoate (9)	S6
¹ H NMR (CDCl ₃) spectrum of Ethyl (<i>E</i>)-4-hydroxy-7,7-dimethoxyhept-5-enoate (10)	S 7
¹ H NMR (CDCl ₃) spectrum of Ethyl (<i>E</i>)-4-hydroxy-7,7-dimethoxyhept-5-enoate (11)	S 7
gCOSY NMR (CDCl ₃) spectrum of Ethyl (<i>E</i>)-4-hydroxy-7,7-dimethoxyhept-5-enoate (11)	S 8
¹ H NMR (CDCl ₃) spectrum of (<i>E</i>)-3-(5-oxotetrahydrofuran-2-yl)acrylaldehyde (12)	S 8
¹ H NMR (CDCl ₃) spectrum of (<i>E</i>)-7,7-dimethoxy-4-oxohept-5-enoic acid (3a)	S9
¹³ C NMR (CDCl ₃) spectrum of (<i>E</i>)-7,7-dimethoxy-4-oxohept-5-enoic acid (3a)	S9
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(7,7-dimethoxy-4-oxohept-5-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (18a)	S10
¹³ C NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(7,7-dimethoxy-4-oxohept-5-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (18a)	S10
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(4-hydroxy-7,7-dimethoxyhept-5-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine ($2a$)	S11
¹³ C NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(4-hydroxy-7,7-dimethoxyhept-5-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine ($2a$)	S11
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(4-hydroxy-7-oxohept-5-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (HOHA-PC , 1a)	S12
¹ H NMR (CDCl ₃) spectrum of 1-tributylstannyl-3,3-diethoxy-prop-1-ene (4)	S12
¹ H NMR (CDCl ₃) spectrum of Methyl (<i>E</i>)-8,8-diethoxy-5-oxooct-6-enoate (14b)	S13
¹³ C NMR (CDCl ₃) spectrum of Methyl (<i>E</i>)-8,8-diethoxy-5-oxooct-6-enoate (14b)	S13
¹ H NMR (CDCl ₃) spectrum of Methyl (<i>E</i>)-8,8-diethoxy-5-hydroxyoct-6-enoate (15b)	S14
gCOSY (CDCl ₃) spectrum of Methyl (<i>E</i>)-8,8-diethoxy-5-hydroxyoct-6-enoate (15b)	S14
¹ H NMR (CDCl ₃) spectrum of Methyl (E)-5-hydroxy-8-oxooct-6-enoate (16)	S15

gCOSY NMR (CDCl ₃) spectrum of Methyl (<i>E</i>)-5-hydroxy-8-oxooct-6-enoate (16)	S15
¹ H NMR (CDCl ₃) spectrum of (<i>E</i>)-3-(6-oxotetrahydro-2H-pyran-2-yl)acrylaldehyde (17)	S16
¹ H NMR (CDCl ₃) spectrum of (<i>E</i>)-8,8-diethoxy-5-oxooct-6-enoic acid (3b)	S16
¹³ C NMR (CDCl ₃) spectrum of (<i>E</i>)-8,8-diethoxy-5-oxooct-6-enoic acid (3b)	S17
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(8,8-diethoxy-5-oxooct-6-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (18b)	S17
¹³ C NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(8,8-diethoxy-5-oxooct-6-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (18b)	S18
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(5-hydroxy-8,8-diethoxyoct-6-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (2b)	S18
¹³ C NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(5-hydroxy-8,8-diethoxyoct-6-enoyl)-1-palmitoyl- sn-glycero-3-phosphatidylcholine (2b)	S19
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(5-hydroxy-8-oxooct-6-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (HOOA-PC , 1b)	S19
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of Methyl-9-(chlorocarbonyl)octanoate (7b)	S20
IR spectrum of Methyl-9-(chlorocarbonyl)octanoate (5c)	S20
¹ H NMR (CDCl ₃) spectrum of Methyl (E)-12,12-diethoxy-9-oxodec-10-enoate (14c)	S21
¹³ C NMR (CDCl ₃) spectrum of Methyl (<i>E</i>)-12,12-diethoxy-9-oxodec-10-enoate (14c)	S21
¹ H NMR (CDCl ₃) spectrum of (<i>E</i>)-12,12-diethoxy-9-oxodec-10-enoic acid ($3c$)	S22
¹³ C NMR (CDCl ₃) spectrum of (<i>E</i>)-12,12-diethoxy-9-oxodec-10-enoic acid ($3c$)	S22
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(12,12-diethoxy-9-oxodec-10-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (18c)	S23
¹³ C NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(12,12-diethoxy-9-oxodec-10-enoyl)-1-palmitoyl- sn-glycero-3-phosphatidylcholine (18c)	S23
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(9-hydroxy-12,12-diethoxydec-10-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine ($2c$)	S24
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(9-hydroxy-12,12-diethoxydec-10-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine ($2c$)	S24
¹ H NMR (CD ₃ OD+CDCl ₃) spectrum of (<i>E</i>)-(9-hydroxy-12-oxodec-10-enoyl)-1-palmitoyl- <i>sn</i> -glycero-3-phosphatidylcholine (HODA-PC , 1c)	S25

General methods.

Proton magnetic resonance (¹H NMR) spectra and carbon magnetic resonance (¹³C NMR) spectra were recorded on a Varian Inova AS400 spectrometer operating 400 MHz or 75 MHz. Proton chemical shifts are reported in parts per million (ppm) on \overline{o} scale relative to CDCl₃ (δ 7.26) or CD₃OD (δ 3.31). ¹H NMR spectral data are tabulated in terms of multiplicity of proton absorption (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad), coupling constants (Hz), number of protons. gCOSY experiment was done on a spectrometer at 400 MHz. All high resolution mass spectra were recorded on a Kratos AEI MS25 RFA high resolution mass spectrometer at 20 eV. FT-IR was obtained as KBr pellets using an MIDAC Co. M2000. All solvents were distilled under a nitrogen atmosphere prior to use, and all materials were obtained from Aldrich unless specified. Flash chromatography was performed with ACS grade solvent. R_f values are quoted for TLC plates of thickness 0.25 mm. The plates were visualized with iodine, dinitrophenylhydrazine or phosphomolybdic acid reagents. Flash column chromatograph was performed on 230-400 mesh silica gels supplied by Whatman and Sorbent.

Figure S1 The 400MHz ¹H NMR (CDCl₃) spectrum of Ethyl (*E*)-4,7-dioxohept-5-enoate (8)

Figure S2 The 100MHz ¹³C NMR (CDCl₃) spectrum of Ethyl (*E*)-4,7-dioxohept-5-enoate (8)

Figure S3 The 400MHz ¹H NMR (CDCl₃) spectrum of Ethyl (*E*)-7,7-dimethoxy-4-oxohept-5-enoate (9)

Figure S4 The 100MHz ¹³C NMR (CDCl₃) spectrum of Ethyl (*E*)-7,7-dimethoxy-4-oxohept-5-enoate (9)

Figure S5 The 400MHz ¹H NMR (CDCl₃) spectrum of Ethyl (*E*)-4-hydroxy-7,7-dimethoxyhept-5-enoate (10)

Figure S6 The 400MHz ¹H NMR (CDCl₃) spectrum of Ethyl (*E*)-4-hydroxy-7,7-dimethoxyhept-5-enoate (11)

Figure S7 The 400MHz gCOSY NMR (CDCl₃) spectrum of Ethyl (*E*)-4-hydroxy-7,7-dimethoxyhept-5-enoate (11)

Figure S8 The 400MHz ¹H NMR (CDCl₃) spectrum of (*E*)-3-(5-oxotetrahydrofuran-2-yl)acrylaldehyde (12)

Figure S9 The 400MHz ¹H NMR (CDCl₃) spectrum of (*E*)-7,7-dimethoxy-4-oxohept-5-enoic acid (**3a**)

Figure S10 The 100MHz ¹³C NMR (CDCl₃) spectrum of (E)-7,7-dimethoxy-4-oxohept-5-enoic acid (**3a**)

Figure S11 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (E)-(7,7-dimethoxy-4-oxohept-5-enoyl)-1palmitoyl-*sn*-glycero-3-phosphatidylcholine (**18a**)

Figure S12 The 100MHz ¹³C NMR (CD₃OD+CDCl₃) spectrum of (E)-(7,7-dimethoxy-4-oxohept-5-enoyl)-1-palmitoyl-*sn*-glycero-3-phosphatidylcholine (18a)

Figure S13 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(4-hydroxy-7,7-dimethoxyhept-5enoyl)-1-palmitoyl-*sn*-glycero-3-phosphatidylcholine (**2a**)

Figure S14 The 100MHz ¹³C NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(4-hydroxy-7,7-dimethoxyhept-5-

 $enoyl) \hbox{-} 1 \hbox{-} palmitoyl \hbox{-} sn \hbox{-} glycero \hbox{-} 3 \hbox{-} phosphatidyl choline ({\bf 2a})$

Figure S15 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(4-hydroxy-7-oxohept-5-enoyl)-1palmitoyl-*sn*-glycero-3-phosphatidylcholine (**HOHA-PC**, 1a)

Figure S16 The 400MHz ¹H NMR (CDCl₃) spectrum of 1-tributylstannyl-3,3-diethoxy-prop-1-ene (4) S12

Figure S17 The 400MHz ¹H NMR (CDCl₃) spectrum of Methyl (*E*)-8,8-diethoxy-5-oxooct-6-enoate (14b)

Figure S18 The 100MHz ¹³C NMR (CDCl₃) spectrum of Methyl (*E*)-8,8-diethoxy-5-oxooct-6-enoate (14b)

Figure S19 The 400MHz ¹H NMR (CDCl₃) spectrum of Methyl (E)-8,8-diethoxy-5-hydroxyoct-6-enoate (15b)

Figure S21 The 400MHz ¹H NMR (CDCl₃) spectrum of (*E*)-methyl-5-hydroxy-8-oxooct-6-enoate (16)

Figure S23 The 400MHz ¹H NMR (CDCl₃) spectrum of (E)-3-(6-oxotetrahydro-2H-pyran-2-yl)acrylaldehyde (17)

Figure S25 The 100MHz 13 C NMR (CDCl₃) spectrum of (*E*)-8,8-diethoxy-5-oxooct-6-enoic acid (**3b**)

Figure S26 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(8,8-diethoxy-5-oxooct-6-enoyl)-1-

palmitoyl-sn-glycero-3-phosphatidylcholine (18b)

Figure S27 The 100MHz ¹³C NMR ($CD_3OD+CDCl_3$) spectrum of (*E*)-(8,8-diethoxy-5-oxooct-6-enoyl)-1palmitoyl-*sn*-glycero-3-phosphatidylcholine (**18b**)

Figure S28 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(5-hydroxy-8,8-diethoxyoct-6-enoyl)-

1-palmitoyl-*sn*-glycero-3-phosphatidylcholine (**2b**)

Figure S29 The 100MHz ¹³C NMR (CD₃OD+CDCl₃) spectrum of (E)-(5-hydroxy-8,8-diethoxyoct-6-enoyl)-1-palmitoyl-*sn*-glycero-3-phosphatidylcholine (**2b**)

Figure S30 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(5-hydroxy-8-oxooct-6-enoyl)-1-

palmitoyl-*sn*-glycero-3-phosphatidylcholine (HOOA-PC, 1b)

Figure S31 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of Methyl-9-(chlorocarbonyl)octanoate (7b)

Figure S32 The IR spectrum of Methyl-9-(chlorocarbonyl)octanoate (7b)

Figure S33 The 400MHz ¹H NMR (CDCl₃) spectrum of Methyl (*E*)-12,12-diethoxy-9-oxodec-10-enoate (14c)

Figure S34 The 100MHz ¹³C NMR (CDCl₃) spectrum of Methyl (*E*)-12,12-diethoxy-9-oxodec-10-enoate (14c)

Figure S35 The 400MHz ¹H NMR (CDCl₃) spectrum of (E)-12,12-diethoxy-9-oxodec-10-enoic acid (3c)

Figure S36 The 100MHz 13 C NMR (CDCl₃) spectrum of (*E*)-12,12-diethoxy-9-oxodec-10-enoic acid (3c)

Figure S37 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(12,12-diethoxy-9-oxodec-10-enoyl)-1-

palmitoyl-sn-glycero-3-phosphatidylcholine (18c)

Figure S38 The 100MHz ¹³C NMR ($CD_3OD+CDCl_3$) spectrum of (*E*)-(12,12-diethoxy-9-oxodec-10-enoyl)-1-palmitoyl-*sn*-glycero-3-phosphatidylcholine (18c)

Figure S39 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(9-hydroxy-12,12-diethoxydec-10enoyl)-1-palmitoyl-*sn*-glycero-3-phosphatidylcholine (**2**c)

Figure S40 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(9-hydroxy-12,12-diethoxydec-10enoyl)-1-palmitoyl-*sn*-glycero-3-phosphatidylcholine (**2c**)

Figure S41 The 400MHz ¹H NMR (CD₃OD+CDCl₃) spectrum of (*E*)-(9-hydroxy-12-oxodec-10-enoyl)-1-

palmitoyl-*sn*-glycero-3-phosphatidylcholine (HODA-PC, 1c)