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Figure S1: ATPase and DNA binding activity of TmMMR"®P, related to Figure 1.

A) ATP hydrolysis activity of thermophilic TMMR"E® (wt) at 60°C or 25°C. A Walker B
motif mutant (E798Q) in TmRad50 rules out contaminating activities. Error bars depict +/-
standard deviation of three independent experiments.

B) DNA binding activity of TnMR"®P using electrophoretic mobility shift assay. Following

protein concentrations (0, 0.5, 2.0, 4.0 and 6.0 UM respectively) were analyzed.
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Figure S2: Western blot analysis of protein levels for different Mrell mutants show that all

mutant proteins are produced at normal endogenous levels. Endogenous actin is used as

loading control. Related to Figure 2.
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Figure S3: Biochemical analysis of TnMRN®P

complexes, related to Figure 3.

A) Gel filtration chromatogram of the Mrel11:Rad50"®° complex in presence of ATPyS and
pBS 11 KS+ plasmid DNA (solid line). The dashed line shows the chromatogram for the
complex treated with HBSV crosslinker in the presence of DNA and ATPyS prior to gel

NBD
0

filtration. The UV absorption peaks corresponding to the Mrell,:Rad5 » complex shows

no change in elution volume, indicating that NBDs from the same complex are crosslinked
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but not NBDs from different complexes. Latter should result in heterooctamers with increased
hydrodynamic radii.

B) Western blot analysis of the fractions 1 and 2 of A) with an a-His antibody against His-
tagged Rad50"®°. Fraction 2 contains both the uncrosslinked and crosslinked
Mre11:Rad50"®P complex. We do not see crosslinked Mrel11:Rad50"2° co-eluting with the
plasmid DNA fraction, indicating that TmMre11:Rad50"®° cannot be crosslinked as a stable
“ring” around internal DNA.

C) SDS polyacrylamide gel showing the amount of crosslinked TmRad50"EP.

D) Gel filtration chromatogram of the disulfide bridged Mre11:Rad50"®" complex in the
presence of ATP and ®X174 RF Il plasmid DNA. Disulfide bridging of the complex was
carried out either in the presence (solid line) or absence (dashed line) of DNA, prior to gel
filtration. We do not see disulfide bridged Mre11:Rad50"E® co-eluting with the plasmid DNA
fraction (peak 1), indicating that TmMrel1:Rad50"®° cannot form a stable “ring” around
internal DNA.

E) DNA binding activity of the disulfide bridged TmMrel1:Rad50"®" tested by
electrophoretic mobility shift assay shows, that the ®X174 RFIlI plasmid DNA was
completely bound by the complex at concentrations used in the above described gel filtration
chromatography experiment (Fig. S3).

F) SDS polyacrylamide gel showing the disulfide bridged TmRad50"®° complex from peak 2
of the gel filtration chromatogram.

G) ATP hydrolysis activity of three interface 2 mutant TmMrell:Rad50"®° protein
complexes compared to wildtype (wt) activity at 60°C. The 1760C****° mutant as well as the
F291SM™ mutant possess a slightly increased ATPase activity (116% and 121% compared to
wt respectively), whereas the 1760C ¢ F291C M shows 130% of the wt activity. Error

bars depict +/- standard deviation of three independent experiments.
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Figure S4: Sequence alignment of the Rad50"®° domain and detailed view of the
Mre11™" and Rad50™®P interaction, related to Figure 4.

A) Sequence alignment of the Rad50 NBD domain (M1-K182 and K689-E852). Conserved
residues are shown in black and grey, corresponding to their level of conservation. Rad50"cP°
residues involved in the Mre11:Rad50"E® Interface 1 and 2 (Fig. 2B1, 2B2) are marked via
orange dots.

B) Detailed view of the Mrell helix-loop-helix (HLH) motif (blue) and its interaction with
the base of the Rad50 coiled-coil (orange and yellow) (taken from the higher resolved
AMPPNP complex structure). Selected side chains are shown as color-coded sticks and the

2Fo-Fc electron density map contoured at 1.0 o, is shown around the interacting residues.
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Figure S5: DNA binding activity and model of the “closed” TmMRN®P complex, related
to Figure 6.

A) SPR sensograms showing the binding of TMMRNEP

to a hairpin DNA immobilized on a
SA-sensor chip w/wo 5 mM AMPPNP. The protein was injected at concentrations of 0, 0.66,
1.3, 2.7, 5.3, 10.6, 21.2, 42.5, 85 and 154 uM. SPR measurements were performed as
described in Supplemental Data. The third diagram shows the comparison of the hairpin DNA
binding of the TMMRN®P in absence (®) and presence (4) of AMPPNP.

B) DNA binding affinity to ds ®X174 RF Il plasmid DNA of the wildtype TmMRNEP
complex w/o AMPPNP compared to the disulfide bridged TmMR"EP (S-S) complex without
ATP analog tested by electrophoretic mobility shift assay. The EMSA indicates that the
closed, ATP bound complex resembles the DNA binding conformation.

C) The closed state model is built from the structures of the Rad50 dimer and the Mrell
dimer. Their C2 symmetry axes are assumed to coincide, which reduces the free parameters to
just two: the distance 6 between their centers of mass and the rotation angle of the Rad50
dimer with respect to the Mrell dimer.

D) Flow chart describing the procedure to fit the model parameters ¢ and ¢ as well as the
mixture coefficients c; and c; to the experimental SAXS curve for the “open” complex and
the curve for the mixture of “open” and “closed” state complexes.

E) The fit procedure minimizes x?, the sum of squared deviations of the experimental curve
for the mixed conformation (blue trace) from the curve of the mixed configuration calculated
using the closed state model (green trace). The agreement of experimental and theoretical
curves is fairly close, except at small scattering angles (s > 0.2 A™).

F) SAXS curves calculated with CRYSOL for mixtures of open and closed state complexes
with different fractions of “open” and “closed” states (c; and c;, respectively). A comparison
with the blue trace in E shows that the fraction of closed state complex is approximately 40%
for the blue trace.

G) The error model o(s) is derived from the log deviation of the experimental SAXS curve
(blue trace) and the theoretical SAXS curve (green trace) of the crystallized open state

complex.





