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1 Robustness and adaptation time

In this section we study how robustness is related to adaptation time.

1.1 Model Description

As in the main text, we consider a population of N individuals under the infinite
alleles Moran model. In each discrete time step, a randomly-chosen individual pro-
duces one offspring, which replaces a random individual. A mutation occurs with
probability µ and produces a unique genotype. With probability q a mutation is
neutral; q therefore quantifies robustness. Otherwise, the mutation is non-neutral
and changes the phenotype to one of K phenotypes accessible from a given geno-
type. Each genotype has a specific set of K accessible phenotypes which constitute
its phenotypic neighborhood; these K phenotypes are drawn uniformly from P pos-
sible alternatives. Genotypes have independent phenotypic neighborhoods, so the
K accessible phenotypes are redrawn whenever a mutation occurs. The model is
described by the five parameters K, P , µ, q, and N .

Starting from a population in steady state, we consider an environmental shift
that assigns one of the P alternative phenotypes the highest fitness. Before the en-
vironmental shift, we assume that all P of the alternative phenotypes are inviable,
such that only genotypes expressing the wild-type phenotype survive and reproduce.
We consider a population evolving in this regime of stabilizing selection until it
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reaches steady-state, as described in Section ?? below. Sometime after the popu-
lation reaches steady-state, the selective environment shifts such that one of the P
alternative phenotypes is no longer inviable, but is instead more fit than the wild-
type. In this section we derive an analytic expression for the mean adaptation time
– i.e the average amount of time elapsed before the newly beneficial phenotype first
arises in the population.

Let t = 0 denote the time at which the alternative phenotype becomes more fit
than the current phenotype – i.e. the time of the environmental shift. At this time
we classify all genotypes in the population into three distinct groups. Genotypes that
express the newly beneficial phenotype are called class C. Genotypes that express the
wild-time phenotype are divided into two classes: those that can reach the optimal
phenotype by a single point mutation, called class B or ’adaptable’, and those that
cannot reach the optimal phenotype by a single mutation, called class A. This
simplification into three classes is equivalent to the infinite-allele model described in
the main text because all genotypes within a class have identical mutations rates to
other classes.

A mutation that arises in a genotype of class A produces a genotype of class B
with probability qK

P
, and it produces another genotype in class A with probability

q(1 − K
P

). The same holds for mutations from class B to class A. However, a
mutation arising in a genotype of class B might alternatively produce a genotype of
class C; this probability of this occurrence is given by the chance that the mutation is
non-neutral, (1− q), times the probability that a non-neutral mutation will produce
the distinguished beneficial phenotype out of K phenotypic neighbors, 1

K
. These

mutation rates are summarized in Supplementary Figure 1.
We assume that the population dynamics follow a discrete-time Moran model

with a total population size N : at each time step, a randomly-chosen individual
produces one offspring that replaces any individual, including the parent, with equal
probability. We assume that all individuals are equally likely to give birth, though
our results remain unchanged if we assume one of class A or B is weakly selected.
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Supplementary Figure 1 – Probability of mutation within and between genotype
classes
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We are interested in the first time to arrival of an individual of type C. Prior to
the first arrival, the total number of individuals is held fixed at N , and so it suffices
to keep track of the number of individuals in class B until the first arrival. When the
first individual of class C arises, we assume that the process jumps to an absorbing
“graveyard” state ∆, at which time we stop the process. We denote this Markov
stopping time by τ∆. We wish to compute the expectation of τ∆ in terms of the
parameters K, P , µ, N , and q.

Let XN(t) denote the number of individuals in class B in the tth time step for
t < τ∆. For t ≥ τ∆ we let XN(t) = ∆. Then XN(t) is a discrete-time Markov chain

on the set I def
= {0, . . . , N} ∪ {∆}. The transition probabilities of this chain,

QN
i,j = P {XN(t+ 1) = j|XN(t) = i} ,

are given by

QN
i,i+1 = (1− µ)

(
i

N

)(
N − i
N

)
+ µ

(
K

P

)
q

((
N − i
N

)2

+

(
i

N

)(
N − i
N

))
,

QN
i,i−1 = (1− µ)

(
i

N

)(
N − i
N

)
+ µ

(
1− K

P

)
q

((
i

N

)2

+

(
i

N

)(
N − i
N

))
,

QN
i,∆ =

µ

K
(1− q)

(
i

N

)
,

QN
i,i = 1−QN

i,i+1 −QN
i,i−1 −QN

i,∆,

for 0 ≤ i ≤ N . Furthermore, QN
∆,∆ = 1, and QN

i,j = 0 for all other pairs i, j ∈ I.
We use the notation QN to denote the matrix with entries QN

i,j, the generator of the
Markov chain XN(t).

1.2 Two continuous-time approximations

The discrete process XN(t) is too complicated to consider directly, so we will in-
troduce two different limiting processes that asymptotically capture the essential
behavior. We will use these continuous-time approximations to derive an analytic
expression for the mean adaptation time. This approximation will be asymptotically
accurate for large N .

We analyze two different time- and mass-rescaled processes:

Y1,N(t) = η−1
1,NXN (bα1,N tc) ,

Y2,N(t) = η−1
2,NXN (bα2,N tc)
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where we define the choices of α1,N � 1, η1,N � 1, α2,N � 1, and η2,N � 1 below.
For each n = 1, 2 note that Yn,N is a continuous-time processes, whereas XN is
discrete. One unit of time for Yn,N(t) corresponds to αn,N time units in the discrete
process XN(t). By definition, Yn,N(t) is O(1) when XN (bαn,N tc) ∝ ηn,N .

We show below that for small initial values XN(0), by choosing η1,N = N
1
2 and

α1,N = N
3
2 the process Y1,N(t) converges in distribution to a diffusion process with

killing, Y1(t), on R∆
+

def
= [0,∞) ∪ {∆}, with transition density function

p(t, z, y) dz = P{Y1(t) ∈ [z, z + dz)|Y1(0) = y},

satisfying the forward Kolmogorov equation

∂p

∂t
=

∂2

∂z2
[zp(t, z, y)]− ∂

∂z

[
βKq

P
p(t, z, y)

]
− β(1− q)

K
zp(t, z, y).

where β = Nµ. Thus, when the number of adaptable individuals is small, back
mutations have negligible effect and the rate of mutation to the adaptable type is
effectively constant. Changes in number are a result of three effects, encapsulated
in the three terms: genetic drift, mutations from non-adapable to adaptable types
and finally mutations from adaptable types to the target phenotype. Even when
the specific form of the mutation rates is varied, as we will consider below, this
asymptotic form, and the interpretation of its three terms, remains unchanged.

We will also show below that by choosing η2,N = N and α2,N = N the process
Y2,N(t) converges to a pure jump process that jumps into state ∆ with probability
one, after a random time which is exponentially distributed with rate

β(1− q)
K

Y2(0).

In the following sections, we give a proof of these two limits. Readers who are
less interested in the formal details may skip ahead to Section 1.3 for the derivation
of the expected first arrival time.

1.2.1 Generators of Stochastic Processes

Let Y (t) be some continuous-time stochastic process, and let Py and Ey denote
probability and expectation conditioned on Y (0) = y, respectively. We recall from
(Karlin & Taylor 1981, Ethier & Kurtz 2005) that the infinitesimal generator A of
Y (t) is

Af(y)
def
= lim

t↓0

Ey [f(Y (t))]− f(y)

t
,

4



for all f for which the limit on the right exists. We refer to all such f as the domain
of A, D(A). For continuous time and continuous state processes, the generator
plays a role analogous to the transition matrix, and may be used, in conjunction
with restrictions on the domain, to uniquely characterize the process. Infinitesimal
generators provide a convenient unifying framework within which to study Markov
processes.

For example, for a diffusion process with killing Z(t), with probability transition
density p(t, z, y), i.e.

Py {Z(t) ∈ (a, b)} =

∫ b

a

p(t, z, y) dz,

satisfying the Komolgorov forward equation

∂p

∂t
=

1

2

∂2

∂z2
[a(z)p(t, z, y)]− ∂

∂z
[b(z)p(t, z, y)]− k(z)p(t, z, y),

the corresponding generator is

Af(y) =
1

2
a(y)f ′′(y) + b(y)f ′(y)− k(y)f(y).

The domain of A consists of all twice differentiable functions satisfying appropriate
boundary conditions (absorbing, reflecting, etc.) and vanishing at the graveyard
point ∆.

A continuous time Markov jump process, where the time to the next jump, start-
ing from y, is exponentially distributed with rate r(y), and µ(y, dz) is the probability
that the process jumps from y to z, has generator

Af(y) = r(y)

∫
f(z)− f(y)µ(y, dz).

For the two limits described above, we have,

A1f(y) = yf ′′(y) +
βKq

P
f ′(y)− β(1− q)

K
yf(y). (1.1)

corresponding to ηn,N = N
1
2 , for ηn,N = N , we get generator

A2f(y) =
β

K
(1− q)y (f(∆)− f(y)) ,

= − β
K

(1− q)yf(y)

(1.2)
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for f continuous in [0, 1] (and vanishing at ∆). The latter generator describes a
Markov jump process with jump rate r(y) = β

K
(1− q)y and jump distribution given

by a Dirac point mass, µ(y, dz) = δ∆(dz), i.e. all jumps are to the graveyard state.
A2 uniquely characterizes the corresponding process. For A1 however, we also need
to determine appropriate boundary conditions, which we discuss below.

1.2.2 Domain and Boundary Conditions for A1

In general, the infinitesimal generator does not uniquely specify a diffusion process.
We must also characterize the domain to which we apply the generator by deter-
mining or imposing appropriate boundary conditions. We do so by following Feller’s
boundary classification (Feller 1954a,b) (see also (Karlin & Taylor 1981, Ethier &
Kurtz 2005)).

For A1,∞ is always a natural boundary, and cannot be reached in finite time. Ac-
cording to Feller’s classification scheme we consider the parameter ν = 1

2

(
1− βqK

P

)
.

If ν < 0, then 0 is a regular boundary, and it is an entrance boundary if ν > 0. In the
former case, the process can enter or leave at 0, and we may specify any boundary
condition from absorption to reflection. In the latter, the process can enter the inter-
val (0,∞) in finite time if started from 0, but can never reach 0 when started from
an interior point. Since our original finite Markov chain model allows for mutation
away from 0, we will impose reflecting boundary conditions at 0 for ν < 0.

Whether the boundary behavior at 0 is entrance or reflecting, the corresponding
condition for a function f belonging to D(A) is the same,

lim
y↓0

f ′(y)

s(y)
= 0.

where
s(y) = y2ν−1.

The natural boundary at ∞ leads to the requirement

lim
y→∞

f(y) = 0.

We also require that ∆ be an absorbing state, which implies that

f(∆) = 0

for all f ∈ D(A1). Lastly, we require that all functions in D(A1) be continuous on
[0,∞) and be twice continuously differentiable on (0,∞). Together, these conditions
specify the domain of A1 and uniquely determine the process Y1(t).
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1.2.3 Deriving the Limiting Generators

To prove convergence, Theorem 6.5 in Chapter 1 of (Ethier & Kurtz 2005) proves
that it suffices to show that, for appropriate choices of αn,N and ηn,N ,

lim
N→∞

sup
y∈Gn,N

|αn,N(QN − I)f(y)− Anf(y)| = 0

for n = 1, 2 and f ∈ D(Ai) ∩ C3(0,∞), where

Gn,N = {η−1
n,Nj|j ∈ N, 1 ≤ j ≤ N},

is the set of all possible values of Yn,N(t).
Now, for y = η−1

n,N i ∈ Gn,N ,

αn,N(QN − I)f(η−1
n,N i) = αn,N

∑
j∈I

QN
i,jf(η−1

n,Nj)− αn,Nf(η−1
n,N i)

= αn,N
∑
j 6=i,∆

QN
i,j

(
f(η−1

n,Nj)− f(η−1
n,N i)

)
− αn,NQN

i,∆

(
f(∆)− f(η−1

n,N i)
)

Taylor expanding f(y) about y = η−1
n,N i, and recalling that f(∆) = 0, yields

= αn,N
∑
j 6=i,∆

QN
i,j

(
η−1
n,N(j−i)f ′(η−1

n,N i)+
1

2
η−2
n,N(j−i)2f ′′(η−1

n,N i)+
1

6
η−3
n,N(j−i)3f ′′′(ξ)

)
− αn,NQN

i,∆f(η−1
n,N i)

= αn,N
(
QN
i,i+1 −QN

i,i−1

)
η−1
n,Nf

′(η−1
n,N i) +

1

2
αn,N

(
QN
i,i+1 +QN

i,i−1

)
η−2
n,Nf

′′(η−1
n,N i)

+
1

6
αn,N

(
QN
i,i+1 −QN

i,i−1

)
η−3
n,Nf

′′′(ξ)− αn,NQN
i,∆f(η−1

n,N i)

for some ξ between η−1
n,N i and η−1

n,Nj. Substituting y = η−1
n,N i and β = Nµ into QN

i,j

and simplifying yields

= αn,Nβq

(
η−1
n,N

N

K

P
− 1

N2
y

)
f ′(y)

+
αn,N

2

(
2
η−1
n,N

N
y − 2

1

N2
y2 − 2

η−1
n,N

N2
βy +

η−2
n,N

N
βq

(
K

P

)
+
η−2
n,N

N4
βq

(
1− 2

K

P

)
y

)
f ′′(y)

+
αn,N

6

(
η−3
n,N

N

K

P
−
η−1
n,N

N2
y

)
f ′′′(ξ)− αn,N

η−1
n,NN

2

β

K
(1− q)yf(y)
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We look for scalings for which all terms are finite, so that the limit is well-
posed, and for which the killing term is non-zero. For the former, we must have
ηn,N = O(N

1
2 ) or smaller, while for the latter, we must have αn,N = η−1

n,NN
2.

If we take α1,N = N
3
2 and η1,N = N

1
2 , then

α1,N(QN − I)f(y)→ A1f(y)

as N →∞, giving the diffusion limit, while if we take η2,N = N and α2,N = N , then

α2,N(QN − I)f(y)→ A2f(y)

Scalings with N � ηN � N
1
2 give rise to a generator identical to A2,

Af(y) = − β
K

(1− q)yf(y),

only the domain now consists of functions continuous on [0,∞) and vanishing at ∆.
All other choices of αN and ηN result in a generator that becomes unbounded or
tends to 0 as N →∞.

1.3 Adaptation time from fixed initial condition

In this section we calculate the expected value of τ∆, the first time at which the
newly beneficial phenotype arises, for each of our two limiting processes Y1(t) and
Y2(t), conditioned on Y1(0) = y or Y2(0) = y:

T1(y)
def
= EY1

y [τ∆] and T2(y)
def
= EY2

y [τ∆] .

Once we account for the rescaling of time and mass, each of these may be used
as an asymptotic approximation to the expected first arrival time starting from a
population with i individuals of class B, in our original discrete model:

TN(i)
def
= EXN

i [τ∆] .

In particular, for i ∝ N
1
2 , we will use Y1(t) to approximate XN(t), so

TN(i) ∼ N
3
2T1(N−

1
2 i), (1.3)

while for i ∝ N , we will use Y2(t) to approximate XN(t), so

TN(i) ∼ NT2(N−1i). (1.4)
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In fact, as we show in Section 1.4, Eq.(1.3) is valid for all 1 ≤ i ≤ N .
When we consider generator A2 (Eq.(1.2)), the mean adaptation time is simply

the mean of an exponential distribution:

T2(y) =
1

β
K

(1− q)y
. (1.5)

On this timescale, the numbers of individuals in class B remains fixed before C ar-
rives. Unfortunately, this simple expression becomes unbounded as y → 0, because
individuals in class C can only arise from B individuals. Moreover, the expres-
sion above cannot be integrated against the steady-state distribution (see below).
Therefore, we must use a different time scaling in order to determine the expected
arrival time starting from very small numbers in class B. We will use the diffusion
approximation with generator (1.1).

Since ∆ is the only absorbing state for our process, T1(y) is the expected first
time to absorption for Y1(t) conditioned on starting from y, which can be written as
a Dirichlet problem for the generator (Karlin & Taylor 1981),

A1T1(y) = −1

T ∈ D(A1)

i.e.

yT ′′1 (y) +
βKq

P
T ′1(y)− β(1− q)

K
yT1(y) = −1

lim
y↓0

y1−2νT ′1(y) = 0

lim
y→∞

T1(y) = 0.

This can be readily solved via the method of Green’s functions (Karlin & Taylor
1981).

We first find solutions u0(y), u∞(y) to the homogeneous problem A1u(y) = 0,

with u0(y) and u∞(y) satisfying the boundary conditions at zero (
u′0
s

(0+) = 0) and
infinity (u∞(∞) = 0), respectively:

u0(y) = yνI−ν(ay) and u∞(y) = yνKν(ay).

where a =
√

β(1−q)
K

and, as before, ν = 1
2

(
1− βqK

P

)
. Iν(z) and Kν(z) are the modified

Bessel functions (Abramowitz & Stegun 1965). The Green’s function G(y, ξ) is then
given by

G(y, ξ) =

{
m(ξ)u0(y)u∞(ξ) if ξ ≤ y

m(ξ)u0(ξ)u∞(y) if y ≤ ξ.
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where
m(y) = y−2ν .

Intuitively, G(y, ξ) dξ represents the expected time Y1(t) spends in [ξ, ξ + dξ),
given that Y1(0) = y. Thus the expected adaptation time is given by

T1(y) =

∫ ∞
0

G(y, ξ) dξ = u0(y)

∫ ∞
y

m(ξ)u∞(ξ) dξ + u∞(y)

∫ y

0

m(ξ)u0(ξ) dξ

= yνI−ν(ay)

[√
π

2a

(a
2

)ν
Γ
(

1
2
− ν
)

+
1

2

π

sin(νπ)

( (
a
2

)ν
y

Γ(1 + ν)
1F2

(
1
2
; 3

2
, 1 + ν;

(
ay
2

)2
)

−
(
a
2

)−ν
y1−2ν

(1− 2ν)Γ(1− ν)
1F2

(
1
2
− ν; 3

2
− ν, 1− ν;

(
ay
2

)2
))]

+Kν(ay)

(
a
2

)−ν
y1−ν

(1− 2ν)Γ(1− ν)
1F2

(
1
2
− ν; 3

2
− ν, 1− ν;

(
ay
2

)2
)
, (1.6)

where 1F2(a1; b1, b2; z) is a generalized hypergeometric function (Slater 1966). This
equation, while unwieldy, gives an analytic expression for the mean adaptation time,
starting from a fixed frequency of B-type individuals.

Using asymptotic properties of the Bessel functions, it is possible to show that

T1(y) =
1

β(1−q)
K

y

(
1 +O

(
1
y

))
, (1.7)

in agreement with (1.5), the expression we previously obtained for large initial fre-
quencies. Thus (1.6) is valid not only for small initial frequencies of XN(0), but in
fact gives a uniform asymptotic estimate for all starting frequencies XN(0).

1.3.1 Approximation near y = 0

From Abramowitz & Stegun (1965), we have

Iν(z) ∼ 1

Γ(1 + ν)

(
1

2
z

)ν
, 0 ≤ z � 1. (1.8)

and

Kν(z) =
1

2

π

sin(νπ)

(
1

Γ(1− ν)

(
1

2
z

)−ν
− 1

Γ(1 + ν)

(
1

2
z

)ν)(
1 +O

(
1
z

))
(1.9)
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Combining these asymptotics expressions with hypergeometric series expressions for
the integrals

∫∞
y
ξ−νKν(aξ) dξ and

∫ y
0
ξ−νI−ν(aξ) dξ, and simplifying using the re-

flection formula for the gamma function (Abramowitz & Stegun 1965),

Γ(ν)Γ(1− ν) =
π

sin(νπ)
,

we obtain an asymptotic expression for T1(y) for y very small,

T1(y) =

√
π

2a

Γ
(

1
2
− ν
)

Γ(1− ν)
+

y

2ν

(
1− 1

1− 2ν

)
+ o(y)

In particular, we obtain a simple expression for the expected first arrival time from
a population consisting only of A-type individuals,

T1(0+) =

√
π

2a

Γ
(

1
2
− ν
)

Γ(1− ν)
.

We may further simplify this using Gauss’ duplication formula for the gamma func-
tion (Abramowitz & Stegun 1965),

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z + 1

2

)
,

to obtain

T1(0+) =
2−2ν−1

a

Γ
(

1
2
− ν
)2

Γ(1− 2ν)

=
2
βqK
P
−2√

β(1−q)
K

Γ
(

1
2
βqK
P

)2

Γ
(
βqK
P

) .

(1.10)

1.4 Adaptation time from steady state

Although (1.6) gives an analytic expression for the mean adaptation time starting
from a fixed initial number of class-B genotypes, XN(0), we are actually interested
in the adaptation time starting from a population in steady state. Therefore, we
must integrate (1.6) over the probability distribution for the frequency of class-B
genotypes in steady state.

Prior to the environmental shift, we have assumed that all genotypes not express-
ing the wild-type, including those in class C, are inviable. Therefore, the relative
frequencies of class A and class B genotypes follow a standard, neutral Moran model
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with asymmetric mutations between two types. Genotypes of class A mutate to class
B at rate βqK

P
, and class B mutates to class A at rate βq

(
1− K

P

)
. Therefore the

steady state frequency of class B individuals follows the well-known beta distribution
(Ewens 2004) with probability density function

P {XN(0) = x} = g(x) = Γ(βq)

Γ(β(1−K
P )q)Γ(β(KP )q)

xβ(1−K
P )q−1(1− x)β(

K
P )q−1.

Thus, the expected adaptation time, in generations, starting from a population
at steady state is

T = N
1
2

∫ 1

0

g(x)T1(xN
1
2 ) dx. (1.11)

The integrand above is difficult to compute numerically for large arguments, x. For-
tunately, for x large we have the asymptotic expansion given by Eq. 1.7. Therefore,
in practice we numerically evaluate the expression above by dividing the integral into
two regimes:

T ≈ N
1
2

∫ 3/
√
N

0

g(x)T1(xN
1
2 ) dx+

∫ 1

3/
√
N

g(x)T2(x) dx

When K � P , almost all of the mass of the Dirichlet distribution is concentrated
near x = 0; i.e. with very high probability there are few or no adaptable types at
time t = 0. Thus, some degree of robustness is necessary for the arrival of sufficient
adaptable types to survive drift and mutate to the target phenotype. As q increases
from 0, the rate of arrival of adapted phenotypes increases, accelerating the arrival
of the target type. However, when q approaches 1, the rate of mutation to the
target type becomes exceedingly small, creating the observed non-monotonicity in
the expected arrival time.

2 The relationship between robustness and phe-

notypic diversity

In this section we analyze how robustness, q, is related to the diversity of pheno-
types produced by mutation, each generation, in a population at steady state. This
calculation avoids the temporal complexity of waiting times and addresses a simple,
general question: can populations that are more robust to mutation ever produce
greater phenotypic diversity?

As before, we assume that one phenotype is fit and that the P alternative phe-
notypes are lethal. Mutations to a given genotype can produce only K phenotypes,
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q is the proportion of mutations that are neutral, and a neutral mutation produces a
novel genotype with a new set of K mutational neighbors. Diversity is measured as
the expected number of distinct lethal phenotypes produced in a single generation,
which we refer to as D(q).

We wish to understand under what parameters a population with some level
of robustness can produce more phenotypic diversity than a comparable population
with no robustness in the genotype-phenotype map. In other words, we wish to

understand the derivative dD(q)
dq

∣∣∣
q=0

. In this section we derive an analytic expression

for this derivative in terms of the model parameters K, P , µ, and N .
As before we consider a haploid population of N asexuals which mutate at a

rate µ and reproduce according to the Moran process. Let A denote the number of
distinct neutral genotypes present in the population. We define

βq = Nµ(1− q)

and

βn = Nµq
1− µN+1qN+1

1− µq
.

βq denotes the expected number of non-neutral mutations that arise in the popula-
tion, each generations. βn is the neutral mutation rate appropriate to the infinite-
alleles Moran model (Ewens 2004), which we use to determine the limiting number
and distribution of neutral alleles.

Let αA,m denote the expected number of novel phenotypes among m mutations
arising in a population with A neutral types, given that each mutation gives rise to
one of K equally-probable neighboring phenotypes. Then, the number of non-neutral
mutations is Poisson distributed with mean βq, and

D(q) =
∞∑
m=0

βmq e
−βq

m!

∞∑
k=0

αk,mP{A = k}. (2.1)

If q = 0, there there is only one neutral genotype present, i.e. A = 1 with
probability one. This genotype can produce up to K alternative phenotypes by
mutation. The expected number of non-neutral mutations in a single generation is
then β0 = Nµ. We thus have

D(0) =
∞∑
m=0

βm0 e
−β0

m!
α1,m (2.2)

13



We now turn to computing α1,m. Let ξi = 1 if the ith mutation gives rise to a novel
phenotype, and 0 otherwise. Then,

ξ =
m∑
i=1

ξi

is the number of distinct phenotypes, and

P{ξi = 1} =

(
1− 1

K

)i−1

.

Thus,

α1,m = E [ξ] =
m∑
i=1

E [ξi] = K

(
1−

(
1− 1

K

)m)
We now turn to D(q) for q > 0. Since we are only interested in the derivative

dD(q)
dq

∣∣∣
q=0

, we need only determine D(q) up to o(q). To this end, we observe that

βn = Nµq

(
N∑
n=0

µnqn

)
= β0q +O(q2).

Next, we consider P{A = k}. The distribution of neutral genotypes in the infinite-
alleles Moran model may be obtained via Hoppe’s urn (Ewens 2004). Briefly, we start
with a population of size 1. At each time step, with probability i−1

i−1+βn
a random

individual produces a clone, while with probability βn
i−1+βn

, we add an individual with
a novel genotype. After N iterations, we have a population with N individuals, for
which

P {A = k} =
∑

2≤j1<j2<...≤N

k∏
i=1

βn
ji − 1 + βn

∏
2≤i≤N

i 6∈{j1,...,jk}

i− 1

i− 1 + βn
.

Thus,

P {A = 1} =
N∏
i=2

i− 1

i− 1 + βn

= 1− β0qHN−1 +O(q2),

(2.3)

where Hn is the nth partial Harmonic sum,

Hn ≡
n∑
i=1

1

i
.
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Similarly,

P {A = 2} =
N∑
j=2

βn
j − 1 + βn

∏
i 6=j

i− 1

i− 1 + βn

= β0qHN−1 +O(q2),

(2.4)

while P {A = k} = O(qk−1) for k > 2. Thus, in the limit q → 0, we need only
consider populations composed of one or two neutral genotypes.

We next turn to α2,m, the expected number of unique phenotypes given m muta-
tions and A = 2. If pi is the probability that there are N − i individuals of the first
genotype and i of the second, the expected number of unique phenotypes is:

α2,m =
N−1∑
i=1

piγm,i, (2.5)

where γm,i is the expected number of phenotypes, resulting from m mutations in a
population with (N − i) type 1 individuals and i type 2 individuals. Note that types
1 and 2 are equivalent (they both encode the wild-type phenotype) except that each
has an independent set of K phenotypic neighbors.

We find γm,i as before: let ξj,k (j = 1, 2, k = 1, . . . , i) be 1 if the kth mutation
to one of the type j individuals gives rise to a new phenotype. Without loss of
generality, we first consider mutations in type 2. As above, the total number of
mutations to type 1 is

ξ1 =
i∑

k=1

ξ1,k

and E[ξ1] = α1,i. Now ξ2,k is 1 if and only if the kth mutation gives rise to different
phenotype from all k − 1 previous mutations to type 2 individuals, and moreover,
that phenotype was not produced by a mutation to a type 1 individual. For the
latter to be true, either the new phenotype is inaccessible to type 1, with probability
1− K

P
, or the phenotype is adjacent to type 1, with probability K

P
, but was not one

of the ξ1 phenotypes that arose. Thus,

P {ξ2,k = 1} =

(
1− 1

K

)k−1(
K

P

K − ξ1

K
+ 1− K

P

)
Thus, if ξ2 =

∑m−i
k=1 ξ2,k,

E [ξ1 + ξ2] = α1,i + α1,m−i

(
K

P

K − α1,i

K
+ 1− K

P

)
= α1,i + α1,m−i −

α1,iα1,m−i

P
,
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and, since the m mutations are binomially distributed among the two genotypes,

γm,i =
m∑
j=0

(
m

j

)(
i

N

)j (
1− i

N

)m−j (
α1,j + α1,m−j −

α1,jα1,m−j

P

)
. (2.6)

Finally, the probability that there are i individuals with the first genotype, given
that A = 2, can be determined via Hoppe’s urn. At each step, a new individual
is added. The first individual of the second genotype arrives at step k + 1 with
probability

βn
βn+k∑N−i
k=1

1
βn+k

,

joining the k individuals of type 1 already present. Treating the k type 1’s and the
single type 2 as separate lineages, the probability of i individuals of type 2 in the
total population of N is simply the proportion of partitions of N with one partition
of size i (Joyce & Tavaré 1987), (

N−i−1
k−1

)(
N−1
k

) .
Summing over all k gives

pi =

(
N−i∑
k=1

1

βn + k

)−1 N−i∑
k=1

1

βn + k

(
N−i−1
k−1

)(
N−1
k

) (2.7)

=
1

HN−1

N−i∑
k=1

(N − i− 1)!(N − k − 1)!

(N − i− k)!(N − 1)!
+O(q) (2.8)

Combining (2.1), (2.3) and (2.4), we have,

D(q) =
∞∑
m=0

(
βmq e

−βq

m!
(P {A = 1}α1,m + P {A = 2}α2,m)

)
+O(q2)

=
∞∑
m=0

(
βm0 e

−β0

m!
((1− β0qHN−1)α1,m + β0qHN−1α2,m)

)
+O(q2)

while subtracting (2.2), dividing by q, and taking q → 0 yields

dD(q)

dq

∣∣∣
q=0

=
∞∑
m=0

βm0 e
−β0

m!
[β0HN−1(α2,m − α1,m)− (m− β0)α1,m] . (2.9)

Supplementary Figure 2 plots Eq. (2.9) for P = 90, N = 300, and µ = 0.04 for
a range of K. Also plotted are simulation results for ∆D

∆q
calculated at ∆q = 0.0001,

for 100 million replicates for each point.
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Supplementary Figure 2 – Predictions using Eq. 2.9 (line) compared with the
means of 100 million replicate simulations at q = 0.0001 (circles).

3 Simulation Methods

Monte Carlo simulations were performed in two main ways. For the data in Figure 2
& 3 in the main text and Supplementary Figures 4, matrices of transition probabilities
were pre-calculated and used to simulate individual replicates of a Markov chain.
Starting distributions for a two-allele Moran model were calculated using Eq. 3.58 in
(Ewens 2004). These simulations were validated by comparison to individual-based
simulations of populations of N genotypes. Similar individual-based simulations were
also used to generate the data shown in Supplementary Figure ??.

Code for all simulations was written in C or C++ and compiled using gcc 4.0.1.
The GSL libraries (v.1.9) were used for pseudorandom number generation, special
functions, and probability distributions.

4 Quantitative effects of N and µ on the optimal

level of robustness

We used numerical methods to explore how the adaptation time from steady state,
given by Eq. 1.11, and the mutational diversity, described above in Section 2, depend
on the population parameters N and µ. The tables below show the approximate q
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which minimizes the adaptation time, or maximizes the mutational diversity, for a
given N and µ. Note that the effects of N and µ can be approximated by considering
only their product, β, but that β affects our measurements of evolvability in qualita-
tively different ways: increasing β decreases the q which minimizes adaptation time,
but increases the q which maximizes mutational diversity.

N µ β q of minimum time q of maximum diversity
5000 0.001 5 0.1 0.67
10000 0.0005 5 0.13 0.68
10000 0.001 10 0.17 0.66
10000 0.0015 15 0.19 0.64
15000 0.001 15 0.19 0.65
10000 0.003 30 0.2 0.58
30000 0.001 30 0.2 0.6

Table 1 – Changes in the q which minimizes adaptation time, and the q which maxi-
mizes mutational diversity, with population size and mutation rate.

5 Relaxation of model assumptions

We relax each of the four main assumptions underlying the model presented in the
main text: (1) a single neutral mutation changes completely the phenotypes neigh-
boring a genotype; (2) the number of phenotypes, K, in a genotype’s mutational
neighborhood is independent of its robustness, q; (3) K and q do not vary among
the genotypes on a neutral network and; (4) alternative phenotypes are lethal (or
adaptive).

To relax the first assumption we introduced a new parameter, f , defined as the
fraction of the K phenotypes neighboring a genotype which are redrawn after a
mutation. Our original model is therefore equivalent to this generalization when
f = 1. Considering this new parameter in light of the analysis above, it is clear that
the only effect of f is to scale the mutation rates between neutral genotypes that are
or are not adaptable – i.e. class B and class A genotypes, respectively. The mutation
rate from A to B is therefore µqf

(
K
P

)
. Since decreasing f is equivalent to increasing

P , values of f < 1 actually broaden the range of parameters for which robustness and
evolvability are positively correlated. This is illustrated in Supplementary Figure 3,
which shows analytic predictions of adaptation times for a range of f .
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Supplementary Figure 3 – The predicted mean time before the arrival of a beneficial
mutation with varying f . N = 10, 000, µ = 0.001, K = 5; a) P = 15; b) P = 100.
f = 1, bottom curves; f = 0.5, middle curves; and f = 0.1, top curves. Decreasing f
increases adaptation time, but the shape of the relationship with robustness remains
consistent.

The second assumption is an implicit description of the topology of neutral net-
works. In our original model, the fraction of mutations that are neutral (q) was
independent of the phenotypic diversity of non-neutral mutations (K). We relax this
assumption by allowing these two quantities to be correlated. As q increases, the
number of mutational neighbors with distinct phenotypes might be expected to de-
crease, and so the richness of those phenotypic mutants, K, might also be expected to
decrease. Therefore, in relaxing the second assumption we explored a linear, negative
relationship between q and an effective value of K, denoted K̂(q):

K̂(q) = bK(1− q)c (5.1)

This gives rise to an alternate limiting process

∂p

∂t
=

∂2

∂z2
[zp(t, z, y)]− ∂

∂z

[
βKq(1− q)

P
p(t, z, y)

]
− β

K
zp(t, z, y),

for which the expected arrival time, T1(y) still takes the form of Equation (1.6),
given an appropriate choice of a and ν (see Section 1). This process also results
in a non-monotonic relationship between the arrival time of the adapted phenotype
and the robustness, q, but the mechanism is slightly different. Here, the rate of
mutation from the adaptable types to the target phenotype is constant, while the
rate of mutation to the adaptable class approaches 0 for q near 0 or 1, and therefore
leads to a non-monotonic relationship between robustness and evolvability.
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Supplementary Figure 4 – The mean time before arrival of a beneficial mutation,
with either K constant or K̂ correlated with q according to Eq. 5.1 or Eq. 5.2.
N = 10000, µ = 0.001, P = 200, and K = 20. Points are means of 10,000 replicate
simulations.

Supplementary Figure 4 shows the results of simulations whenK is negatively cor-
related with q according to Eq. 5.1. Comparing the open circles to the closed circles,
which show numerical results for the same parameters and K independent of q, we
note a quantitative difference for larger values of q. However, the non-monotonicity
is preserved, suggesting that our qualitative conclusions are not sensitive even to a
strong negative correlation between K and q.

For the sake of completeness, we also explored a positive correlation between q
and K:

K̂(q) = bKqc+ 1 (5.2)

Simulations in this regime produced qualitatively similar results; see Supplementary
Figure 4.

To relax the third assumption, we performed simulations in which either K or q
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were allowed to vary by genotype. (P is a property of an entire fitness landscape and
so cannot vary with genotype). To vary K, we assigned each genotype in our neu-
tral network a value of K drawn independently from a distribution. K is therefore
effectively re-drawn following a neutral mutation. Supplementary Figure 5 shows
the relationship between robustness, q, and mean adaptation time in three different
situations: constant K = 5, K drawn from a Poisson distribution with mean 5,
and K drawn from a shifted geometric distribution with mean 5 (distributions were
truncated at K = P ). Populations were allowed to evolve before the environmental
shift until the number of adaptable individuals, and the distribution of K, had equi-
librated. As the figure demonstrates, our results are remarkably robust even when
we allow K to vary across the neutral network. In fact, our analytic prediction for
the mean adaptation time is highly accurate, after replacing the fixed value of K, in
the original model, with the mean of the distribution from which K is drawn, in the
extended model.
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Supplementary Figure 5 – The mean time before arrival of a beneficial mutation,
for constant K and variable K. N = 10000, µ = 0.001, P = 100, and mean K = 5.
Points show the means of at least 4,000 replicate simulations.
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As before, this can be explained by considering the rate of mutation into the
family of adaptable genotypes and the rate of mutation from the adapted types to
the target phenotype. We omit the calculations here, but it can be shown that

the rate of mutation into the adaptable class takes the form µq
(

E[K]
P

)
, while the

rate of mutation into the target phenotype is obtained by averaging β(1−q)
K

over all
individuals in the population. As before, these two rates determine the expected
arrival time of the target phenotype.

We also relaxed the third assumption by allowing q to vary among genotypes in
a neutral network. To do so, we performed simulations in which an offspring inherits
its parent’s value of q, plus a random perturbation whenever a neutral mutation
occurs. These perturbations are drawn from a Gaussian with standard deviation
0.1; if a perturbation would produce a q outside of [0, 1], then q is left unaltered.
This method of mutating q allows robustness to evolve. Prior theory suggests that
a population should evolve towards elevated robustness (higher q) in a fixed envi-
ronment, because more robust individuals have an effective selective advantage of
order µ (van Nimwegen et al. (1999), Forster et al. (2006)). This is indeed what
we observe: the mean q in a population, denoted q, tends to increase over time in
a fixed environment. Figure 6 shows this behavior by plotting the distribution of q
across the ensemble of replicate simulations. At the beginning of a simulation, each
individual is assigned a q from the uniform distribution, and q is therefore approx-
imately normally distributed with a mean of 0.5. After each population evolves for
10,000 generations in a fixed environment, the ensemble distribution of q has shifted
significantly towards larger values (Supplementary Figure 6, reflecting the evolution
of robustness in a fixed environment.

After 10,000 generations, we assign one of the P alternative phenotypes the high-
est fitness, and we record the subsequent arrival time of the first such adaptive
mutation. The relationship between q in a population at the time of this environ-
mental shift and the subsequent time before the arrival of a beneficial mutation is
summarized in Supplementary Figure 7. In this figure, the results of almost 300,000
replicates are binned according to q and plotted as grey points. The line illustrates
analytical results results with fixed q, while black dots show comparable simulation
results for fixed q. Although q may continue to evolve between the 10,000th gener-
ation and the eventual arrival of a beneficial mutant, we nonetheless find that q is
an excellent predictor of adaptation time. In fact, our analytic formula for the mean
adaptation time is highly accurate, after replacing the fixed value of q in the origi-
nal model with observed mean q in the population. We also performed simulations
in which we waited 100,000 generations before allowing beneficial mutations; these
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Supplementary Figure 6 – (a) Histograms of q among nearly 300,000 replicates
at generation zero (left) and generation 10,000 (right). Parameters: N = 10000,
µ = 0.001, P = 100, and K = 5.

simulations produced very similar results. Thus, our results are robust with respect
to significant variation in q across a neutral network and the associated evolution of
q within a population.

For the sake of completeness, we also allowed f to vary across the neutral network.
We assigned each genotype in our neutral network a value of f drawn independently
from a distribution. f is therefore effectively re-drawn following a neutral mutation.
Supplementary Figure 8 shows the relationship between robustness, q, and mean
adaptation time in two different situations: constant f = 0.5, f drawn from a normal
distribution with mean 0.5 and variance 0.1 (truncated at zero and one). Populations
were allowed to evolve before the environmental shift until the number of adaptable
individuals, and the distribution of f , had equilibrated. As the figure demonstrates,
our results are robust even when we allow f to vary across the neutral network. In
fact, our analytic prediction for the mean adaptation time is highly accurate, after
replacing the fixed value of f , in the original model, with the mean of the distribution
from which f is drawn, in the extended model.

Finally, we considered the effects of relaxing the fourth assumption. In our orig-
inal model all mutations were either neutral or lethal, prior to the environmental
shift. We simulated an alternative model in which the previously-lethal phenotypes
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Supplementary Figure 7 – Mean arrival time of the first beneficial mutant. The grey
crosses depict means binned according to the value of q at the time of the environmental
shift. The solid line shows comparable analytical results for fixed q, while the black
circles show simulations for fixed q. N = 10000, µ = 0.001, P = 100, and K = 5.

were assigned fitness 1 − s, reflecting a disadvantage of size s compared the fitness
of the focal phenotype. As before, individuals are chosen to reproduce in proportion
to their fitnesses.

To describe mutation among the phenotypic classes in this more general model
it is helpful to extend the notation used above. Genotypes of type C express the
phenotype that will be beneficial after the environment changes, and they have fitness
1 − s prior to that shift. Genotypes of type B can produce type C mutants, and
they can have fitness 1, which we will call Bfit, or 1 − s, which we denote by Bdel.
Similarly, type A genotypes cannot produce type C, and they may either be Afit or
Adel. Any mutation, whether neutral, deleterious, or beneficial, causes the set of K
neighbors to be redrawn. Therefore, Adel-types may or may not be able to mutate
back to Afit, depending on the phenotypic neighborhood of that type. Finally,
we impose a necessary constraint on phenotypic neighbors: a mutant’s phenotypic
neighborhood must contain its parent’s phenotype. So, if a type C genotype mutates
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Supplementary Figure 8 – The mean time before arrival of a beneficial mutation,
for constant f and variable f . N = 10000, µ = 0.001, P = 100, and mean f = 0.5.
Points show the means of at least 4000 replicate simulations.

to a deleterious phenotype, it must become Bdel.
We used individual-based Moran simulations to explore the time elapsed until

the first type-C individual arises. Each simulation began with an average proportion
K
P

individuals of type Bfit, with the remaining of type Afit. Populations evolved for
30,000 generations before the environmental shift, at which time type C individuals
become beneficial. 30,000 generations was determined to be sufficient for equilibrium
by observing the distributions of Bfit, Bdel, and type C individuals across an ensemble
of evolving populations. We recorded the arrival time of the beneficial type in terms
of the number of generations after the environmental shift; if type C individuals were
present at the environmental shift, this time was recorded as zero.

When alternative phenotypes are strongly deleterious (s ≈ 1) we expect to see
little difference between the results of the original, lethal-mutation model and the
new model. However, when s ≈ 0 we anticipate a monotonic, negative relationship
between robustness and evolvability. When s = 0 non-neutral mutations have no
cost, contribute to diversity in phenotypic neighborhoods, and generate type C in-
dividuals. Therefore, we ask how large must s be to match qualitatively the results
of our original, lethal-mutation model.

Supplementary Figure 9(a) confirms that the relationship between robustness and
evolvability is still non-monotonic when alternative phenotypes are moderately dele-

25



●
●

●
●

●
●

●
●

●
●

●

●

0.2 0.4 0.6 0.8

20
0

50
0

10
00

20
00

q

A
rr

iv
al

 T
im

e 
fo

r 
B

en
ef

ic
ia

l M
ut

an
t

●

●

●

●

●

●

●

●

●
●

●

●

(a)
●

●

s = 0.02
s = 0.05
s = 0.3

●

●

● ●
● ● ●

●

●

●

●

●

0.2 0.4 0.6 0.8

5
10

15

q

D
is

tin
ct

 M
ut

an
t P

he
no

ty
pe

s

●

●

●

●

●
● ●

●

●

●

●

●

(b)

●

●

s = 0.02
s = 0.05
s = 0.3

Supplementary Figure 9 – Adaptation time and phenotypic diversity when alterna-
tive phenotypes are deleterious, but not lethal. N = 10, 000, µ = 0.001, P = 100, and
K = 5 for all simulations shown. The dotted lines displays the means for the original
model with lethal alternative phenotypes. (a) Mean adaptation time for three values
of s, the fitness penalty of alternative phenotypes. Each point is the mean of 10,000
replicate simulations. (b) Mean number of unique mutant phenotypes. Each point is
the mean of 5000 simulations.

terious. Similarly, we also used Moran simulations to measure phenotypic diversity
in steady-state populations when the alternative phenotypes were deleterious but
not lethal. These results, shown in Supplementary Figure 9(b), demonstrate that
robustness and phenotypic diversity can also exhibit a non-monotonic relationship
when alternative phenotypes are moderately disadvantageous. While the assumption
that other phenotypes are lethal is mathematically convenient in our analyses, it can
be relaxed without changing our qualitative results.

6 RNA Simulations

6.1 Measuring Epistasis in the RNA Landscape

We used the Vienna RNA package to calculate the minimum-free-energy secondary
structures of RNA nucleotide sequences. The resulting genotype-phenotype map
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was analyzed to estimate P, K, and f for a range of sequence lengths, L. While there
are significant differences between the RNA landscapes and the type of abstract
landscapes considered in our model, these estimated values provide some intuition
about reasonable parameter values.

Our model assumes that out of P equally-likely phenotypes, K are equally-
accessible from a given genotype. Since phenotypes are not evenly distributed in
the RNA landscape, either globally or in the neighborhood of a single genotype, we
must calculate some effective number of types for RNA. We note that, in our model,
if we introduce two mutations into individuals of the same genotype, then the prob-
ability these mutation produce the same phenotype is 1

K
. Similarly, if the mutations

occur in individuals with different genotypes, the probability of producing the same
phenotype is 1

P
. Since these probabilities have an intuitive connection to the roles

of K and P in our model, we define the effective K and P in the RNA landscape
to yield the same probabilities. Additionally, some RNA sequences have the trivial,
unfolded shape as their minimum free energy structure. We choose to regard this
unfolded phenotype as inviable. We therefore define Ke as the inverse of the proba-
bility, pclone, that two viable phenotypes produced by non-neutral mutations in clones
of the same genotype, are the same. Similarly, we define Pe as the inverse of the
probability, prandom, that two viable phenotypes produced by non-neutral mutations
in individuals with random, viable genotypes, are the same. Both pclone and prandom
are measured by sampling random genotypes of length L with viable structures, and
recording the phenotypes of random, non-neutral mutants of those genotypes; one
hundred thousand genotypes were sampled for each L. Ke is therefore an average K
across all genotypes in the landscape, while Pe is a lower bound on the number of
accessible phenotypes; both are plotted in Supplementary Figure 10 for a range of
L.

Estimating f is complicated by variation in K across the network. In keeping
with the approach for Ke and Pe above, we relate f to the probability that two
mutants have identical phenotypes. In our model, f determines the expected fraction
of K neighbors that differ between two immediate neighbors on a neutral network,
for P large. We therefore measure the probability, pneighbor, that a viable, non-
neutral mutant of genotype x has the same phenotype as a viable, non-neutral mutant
produced from a neutral neighbor of x. pneighbor can be related to f , pclone, and
prandom as follows. First, note that we expect an adjacent pair of genotypes to
have (1− f)K phenotypic neighbors in common, and fK neighbors drawn from the
remaining P − (1 − f)K possible phenotypes. A given phenotype can appear only
once in a set of K neighbors, so if a phenotype falls among the shared (1−f) portion
of the neighborhoods, then it cannot fall among the unshared, redrawn f portion
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Supplementary Figure 10 – Ke and Pe for Simulated RNA Molecules of Length L

of either genotype’s neighborhood. Therefore, we only need to consider the cases
where both mutants produce phenotypes in the shared part of their neighborhoods,
with probability (1 − f)2, or both produce phenotypes in the unshared portion of
their neighborhoods, with probability f 2. In the former case, the probability that
both mutants will have the same phenotype is 1

(1−f)Ke
, or pclone

1−f . In the latter case,

each mutant can be one of P − (1 − f)K possible phenotypes; if K � P then the
probability that they are the same phenotype is approximately 1

Pe
, or prandom. These

considerations yield the following relationship among pneighbor, pclone, prandom, and f :

pneighbor ≈ (1− f) pclone + f 2 prandom (6.1)

We use the equation above to define the effective value of f for the RNA land-
scape, after first measuring pneighbor, pclone, prandom. Supplementary Figure 11 shows
values of fe estimated in this way, for several sequence lengths L. These estimates
complement the findings of (Sumedha et al. 2007), who examined the overlap in
phenotypic distance of related, but not neighboring, RNA genotypes.

Together these estimates for the RNA folding landscape suggest that the space
of possible phenotypes is very rich compared to the phenotypic neighborhood of a
single genotype – i.e. K � P . Furthermore, the phenotypic neighborhoods of neu-
tral neighbors differ significantly. These measurements in RNA confirm the central
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premise of our model: a neutral mutation can have profound, epistatic consequences
for the phenotypes of subsequent mutations.

6.2 Robustness and Evolvability in Evolving RNA Popula-
tions

To more directly test our abstract model using the RNA genotype-phenotype land-
scape, we performed evolutionary simulations with populations of RNA sequences.
In these simulations, genotypes were 24-base-pair sequences and phenotypes were
the minimum-free-energy structures of these sequences. For a set of simulations, we
first chose M structures to designate as ‘high-fitness;’ these correspond to the single,
high-fitness type in our abstract model. Adjusting M allows us to tune the ease
of adapting to high fitness, much as we set the ratio K

P
in our general model. For

each replicate, we chose genotypes at random until one was found that folds into a
non-trivial structure which is not a high-fitness type. The chosen phenotype repre-
sents the fit wild-type; all other structures, except the high-fitness types, are then
considered to be inviable. The chosen genotype is then used to found a population of
N clones, which then evolve according to a Wright-Fisher, discrete-generation model
until the first high-fitness phenotype arises. The ’adaptation time’ is defined as the
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number of generations which pass before a high-fitness type arises. Note that each
replicate begins from a potentially unique genotype, but the high-fitness phenotype
remain consistent throughout a set of replicates.

We measured the robustness, q, of each initial genotype as the frequency of point
mutations that do not alter the phenotype, as we have done throughout our analysis.
We used this initial q to predict adaptation times according to the analytical formulae
derived above. For these simulations, the initial population was clonal, and so either
all individuals were pre-adapted or none were pre-adapted. Thus, we obtained the
expected adaptation time by suming expected adaptation times from each of these
initial conditions, weighted by their probability:

P{none pre-adapted}TN(0) + P{all pre-adapted}TN(N)

∼ P{none pre-adapted}T1(0) + P{all pre-adapted}T2(1),

for large N , where T1(0) is given by (1.10) and T2(1) is obtained from (1.5). To calcu-
late predicted waiting times as a function of q, we measured three properties of these
initial genotypes corresponding to the three parameters of our general model: the
probability that a genotype is pre-adapted, the average mutation rate of pre-adapted
genotypes to the high-fitness types, and the probability that a genotype which is not
pre-adapted has a pre-adapted neighbor. These measurements correspond to K

P
, 1
K

,
and f in our abstract model. Although we estimated f above for RNA landscapes
in general, we found that specific landscapes, determined by the particular set of M
high-fitness types, have values of f which are more relevant to evolution of those
landscape. Also, the mutation rate to high-fitness types declined monotonically with
q in the RNA data, and so we used a linear regression of this relationship in our
analytic predictions.

Supplementary Figure 12 shows the mean adaptation time as a function of ro-
bustness, q, for two sets of RNA simulations. In both cases, N = 500 and µ = 0.0002;
M = 500 in the lower curve, and M = 200 in the upper curve. Note that the em-
pirical relationship between robustness and evolvability is somewhat more complex
and differs from our analytical prediction; however, the primary trend matches the
U-shaped prediction of our general, population-genetic model. Moroever, our gen-
eral model accurately predicts the scale of the waiting times in the RNA simulations,
over several orders of magnitude.

Our analysis of the RNA genotype-phenotype map suggests that robustness can
facilitate adaptation under some circumstances. However, Ancel & Fontana (2000)
found that evolving RNA populations became less able to adapt as their robustness
increased. While several differences between their study and ours may contribute
to this discrepancy, the most fundamental one is that Ancel and Fontana did not
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Supplementary Figure 12 – The mean time before arrival of a beneficial mutation in
RNA simulations. Each point is the mean of replicate simulations, and lines represent
analytical predictions as described in the text. N = 500 and µ = 0.0002; M , the
number of high-fitness phenotypes, is 500 in the lower curve, and 200 in the upper.

manipulate robustness to test its effect on adaptation. In fact, populations typically
became more robust as they evolved, such that robustness and distance from the
optimum were confounded. By specifying a set of high-fitness types, rather than
evolving population toward a distant optimum, our simulations reduce the effect
of confounding variables. We also note that Cowperthwaite et al. (2008) found no
relation between the size of the neutral network on which a population began, and
its success at evolving to a distant phenotypic optimum; similarly, Wagner (2008)
found no relationship between the robustness of a sequence, and a measure of its
evolvability. The major difference between our results and those negative findings is
that we designate a set of structures as high-fitness, as opposed to picking a single,
optimal structure. As a result, the populations evolved much more rapidly in our
simulations, compared with the slow, step-wise process of adaptation to a distant
optimum. The relative speed of adaptation in our simulations suggests that the
robustness of the initial genotype has a much greater influence on adaptation than
in previous studies.
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For all simulations we used version 1.6.1 of the Vienna package. Sequences were
folded at 37◦C with the option ‘dangles’ set to ‘2.’ These settings produced the same
landscapes as those described in (Cowperthwaite et al. 2008).

References

Abramowitz, M. & Stegun, I. A. (1965), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, Dover Publications, New York.

Ancel, L. W. & Fontana, W. (2000), ‘Plasticity, evolvability, and modularity in rna.’,
J Exp Zool 288(3), 242–283.

Cowperthwaite, M. C., Economo, E. P., Harcombe, W. R., Miller, E. L. & Meyers,
L. A. (2008), ‘The ascent of the abundant: How mutational networks constrain
evolution’, Plos Computational Biology 4(7).

Ethier, S. N. & Kurtz, T. G. (2005), Markov Processes: Characterization and Con-
vergence, Wiley Interscience, Hoboken.

Ewens, W. J. (2004), Mathematical population genetics, Vol. v. 27, 2nd ed edn,
Springer, New York.
URL: http://www.loc.gov/catdir/enhancements/fy0818/2003065728-d.html

Feller, W. (1954a), ‘Diffusion processes in one dimension’, Trans. Amer. Math. Soc.
77(1), 1–31.

Feller, W. (1954b), ‘The general diffusion operator and positivity preserving semi-
groups in one dimension’, Ann. of Math. 60(3), 417–436.

Forster, R., Adami, C. & Wilke, C. O. (2006), ‘Selection for mutational robustness
in finite populations’, Journal of Theoretical Biology 243(2), 181–190.
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