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Supplementary Methods

Cloning, overexpression and purification of proteins. Cloning, expression, and purification of PacJLNOPU
have been reported previously.! The genes of pacH, W, V, D, | were PCR amplified from genomic DNA
extracted from S. coeruleorubidus NRRL 18370, and the gene of PacH’ was PCR amplified from genomic
DNA extracted from S. roseosporus NRRL 15998 (primers listed in table S1). Purified PCR products were
ligated to pET-24b or pET-30 Xa/LIC (Novagen) following the standard protocol and confirmed by DNA
sequencing. The resulting expression constructs were transformed into E. coli BL21 or BAP1 cells for protein
expression. Expression and purification for all proteins with Hise-tag followed the same general procedure and
is detailed as follows. In 1 L of liquid culture, the cells were grown at 37 °C in LB medium with 50 pg/mL
kanamycin to an OD600 of 0.4. The cells were cooled on ice for 10 min and then induced with 0.1 mM
isopropyl-B-D-thiogalactopyranoside (IPTG) for 16 h at 16 °C. The cells were harvested by centrifugation
(6000 rpm, 6 min, 4 °C), resuspended in 30 mL lysis buffer (25 mM HEPES pH 8.0, 0.5 M NaCl, 5 mM
imidazole) and lysed by sonication on ice. Cellular debris was removed by ultracentrifugation (35000 rpm, 35
min, 4 °C). Ni-NTA agarose resin was added to the supernatant (1 mL/L of culture) and the solution was
nutated at 4 °C for 1 h. The protein resin mixture was loaded into a gravity flow column, and proteins were
eluted with increasing concentrations of imidazole in Buffer A (50 mM HEPES, pH 8.0, 1 mM EDTA).
Purified proteins were concentrated and buffer exchanged into Buffer A + 10% glycerol using Amicon Ultra
filters. The final proteins were flash-frozen in liquid nitrogen and stored at -80 °C. The approximate protein
yields were 12 mg/L for PacH (10 kDa), 8.3 mg/L for PacH’ (10 kDa), 1.1 mg/L for PacD (43 kDa), 1.0 mg/L

for Pacl (47 kDa), 4.3 mg/L for PacW (56 kDa), and 15 mg/L for PacV (28 kDa).

DABA synthesis. The synthesis of (2R,3R)-diaminobutanoic acid and (2S,3S)-diaminobutanoic acid was
accomplished using the procedure developed by Davies et al (Figure S2).>° The experimental details for the

complete synthesis of (2S,3S)-diaminobutanoic acid is detailed here.
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(S)-(-)-N-benzyl-a-methyl-benzyl amine (645 mg, 3.05 mmol, 1.4 equiv) was added to a round bottom flask
containing THF (16.0 mL) and cooled to —78 °C. A solution of n-butyl lithium (1.6M/hexanes) was then added
drop-wise to the reaction flask over the 15 minutes. Upon addition the reaction immediately turned pink in
color, the solution was maintained at —78 °C. After 30 minutes a solution of tert-butyl crotonate (311 mg, 2.18
mmol) in THF (8.00 mL) cooled to —78 °C was canulated drop-wise into the reaction flask. The solution turned
orange and then slowly back to pink over 2h at —78 °C. (S)-(+)-(10-camphor-sulfonyl)-oxaziridine (1.0 g, 4.36
mmol, 2.0 equiv) was then added and the reaction was warmed to ambient temperature. After 16 h saturated
aqueous ammonium chloride (10 mL) was added to the reaction. The mixture was added to a separatory funnel
containing brine (10 mL) and then a mixture of CH,Cl,:Et,0O (1:1, 10 mL) was also added. The layers were
separated and the aqueous layer was extracted with CH,Cl,:Et;O (1:1, 20 mL x 2). The combined organics
were dried over magnesium sulfate, filtered, and concentrated in vacuo. Purification by flash column
chromatography (5% EAc:Hx) afforded 13 as a colorless oil, Ry = 0.35 EAc:Hx (4:2), 76% yield. 'H and °C

NMR matched those previously reported.

Triphenyphosphine (569 mg, 2.17 mmol, 2.1 equiv) was weighed into a round bottom flask and put in solution
with THF (12 mL) at ambient temperature. 13 (402 mg, 1.08 mmol), and diethyl azodicarboxylate (377 mg,
2.17 mmol, 2.0 equiv) were then added. Diphenylphosphorylazide (3.51 mL, 16.2 mmol, 15.0 equiv) was then
added drop-wise over 30 minutes. After 40 h the reaction was concentrated in vacuo and purified using flash
column chromatography 5% EAc:Pet to afford 14 as a colorless oil, Ry = 0.7 EAc:Pet (1:6), 64% yield. 'H and

3C NMR matched those previously reported.
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Triphenylphosphine (270 mg, 1.03 mmol, 1.5 equiv) was weighed into a round bottom flask and put in solution
with THF (2.8 mL) at ambient temperature. 14 (271 mg, 0.687 mmol) was then added followed by water (440
uL). After 24 h the solution was concentrated in vacuo and purified using flash column chromatography

Pet:EAc:MeOH (79:20:1) to afford 15 as a white solid, Rt = 0.23 Pet:EAc:MeOH (79:20:1), 90% yield.

Ph

Yoo

Ph N 0]

/\l)LOtBu

NH,

15
15 (224 mg, 0.608 mmol) was put in solution with ethanol (2 mL), palladium hydroxide (102 mg) was then
added. The reaction flask was placed in a Parr bomb, purged with hydrogen gas, closed, and then filled to 70
psi with hydrogen. Reaction vessel was then heated to 55 °C. After 20 h the reaction mixture was filtered
through celite washing with ethanol (10 mL) and then concentrated in vacuo. Product was then triturated with
Hex (3 mL) then Et,0 (3 mL) to provide a white/yellow solid. LCMS and "H NMR confirmed that the product
was 16.

NH, O

OtBu
NH,
16

To a round bottom flask containing 16 and cooled to 0 °C was added trifluoroacetic acid (3 mL). The reaction

was then warmed to room temperature. After 19 h the crude solution was concentrated in vacuo and then
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aqueous 1 M HCI solution was added (3 mL). After 4.5 h the solution was concentrated in vacuo to provide 17.
LCMS and 'H NMR confirmed the product and matched what had been previously published. The yield over

the last two steps is 72%.

NH, O
- 2HCl
OH

NH,
17

5’-aminouridine synthesis. The synthesis of 5’-aminouridine was accomplished using the procedure

developed by Winans et al.*

Under an inert atmosphere of N», an oven-dried (160 °C) 100-mL round-bottom flask, equipped with a magnetic
stir bar, was charged with uridine (2.50 g, 10.2 mmol), p-toluenesulfonic acid monohydrate (325 mg, 1.71
mmol), and crushed activated 4 A molecular sieves (980 mg). Dry DMF (30 mL) was added and the mixture
allowed to stir. Once the solids had all dissolved, 2,2-dimethoxypropane (5.0 mL, 41 mmol) was added and the
mixture heated to 40 °C. After 1.5 h, the mixture was allowed to cool to ambient temperature and was
neutralized with Amberlyst A-21 free base resin (ca. 0.5 g). The solids were filtered through a pad of Celite and
the supernatant concentrated to a viscous light yellow oil, which could be solidified by concentration from a
MeOH/EtOAc/hexanes mixture. The off-white solid was then purified by silica gel chromatography (dry-load
method, 15:1 to 9:1 CH,Cl,:MeOH) to yield acetonide 18 (720 mg, 2.53 mmol, 24.8% yield) as a white solid.

Physical and spectral data matched that previously reported.

50
et
18
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Under an inert atmosphere of N», an oven-dried (160 °C) 25-mL round-bottom flask, equipped with a magnetic
stir bar, was charged with 18 (357 mg, 1.26 mmol), p-toluenesulfonic anhydride (656 mg, 2.01 mmol), and
CH,ClI; (5 mL). Pyridine (1.00 mL, 12.6 mmol) was added and the mixture allowed to stir; the solids dissolved
and the mixture warmed slightly. The flask was fitted with an oven-dried (160 °C) reflux condenser and the
mixture heated to a gentle reflux. After 2.5 h, the mixture was allowed to cool to ambient temperature and was
poured into CH,Cl, (25 mL). The mixture was then washed with 0.5 M aqueous HCl (4 X 15 mL) and
saturated aqueous NaHCOs (40 mL). The organic layer was dried over Na,SOy, filtered, and concentrated to a
yellow solid, which was clean enough to be carried forward without purification. Physical and spectral data

matched that previously reported.

N

Under an inert atmosphere of N,, an oven-dried (160 °C) 25-mL round-bottom flask, equipped with a magnetic
stir bar, was charged with sodium azide (246 mg, 3.78 mmol; WARNING: sodium azide may be explosive —
handle with care). A solution of 19, obtained directly from the tosylation reaction above, in 2.5 mL DMF was
transferred to the reaction vessel by cannula; the flask containing 19 was rinsed with 0.5 mL DMF and similarly
transferred. The mixture was allowed to stir and was heated to 45 °C. After 18 h, the mixture was allowed to
cool to ambient temperature and the solids were filtered through a plug of cotton, eluting with copious CH,Cl,.
The solvent was removed by distillation, leaving behind a yellow solid. The material was then purified by silica
gel chromatography (dry-load method, 20:1 CH,Cl,:MeOH) to deliver azide 20 (189 mg, 0.613 mmol, 48.7%
yield over two steps) as an off-white solid (WARNING: alkyl azides may be explosive — handle with care).

Physical and spectral data matched that previously reported.
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Under an atmosphere of air, to the 10-mL vial containing azide 20 (189 mg, 0.613 mmol; WARNING: alkyl
azides may be explosive — handle with care) was added a magnetic stir bar and a 9:1 solution of TFA:H,O (3
mL total volume). The mixture was allowed to stir for 40 min, at which time the solvent was removed in vacuo.
Residual water was removed by azeotropic vacuum distillation with benzene (2 mL). The resulting viscous
yellow oil was purified by silica gel chromatography (dry-load method, 15:1 to 9:1 CH,Cl,:MeOH) to afford
diol 21 (151 mg, 0.561 mmol, 91.5% yield) as a white solid (WARNING: alkyl azides may be explosive —

handle with care). Physical and spectral data matched that previously reported.

H
OYN @)
Pl
N
HO  OH

21
Under an atmosphere of air, to the 10-mL vial containing diol 21 (151 mg, 0.561 mmol; WARNING: alkyl
azides may be explosive — handle with care) was added a magnetic stir bar and MeOH (3.5 mL). 10% Pd/C (30
mg) was then added and the vial fitted with a rubber septum; the mixture was allowed to stir. The atmosphere
was then purged with a balloon of hydrogen gas and the reaction vessel then fitted with a fresh balloon of
hydrogen gas. After 75 min, the mixture was fitted through a plug of Celite, eluting with MeOH. The solution
was concentrated in vacuo to afford an off-white solid. The material was then triterated by dissolving in

minimal MeOH, addition of one-half volume of EtOAc, and then rapid addition of 10 volumes of hexanes. The
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solid was filtered and allowed to dry, delivering 5’-aminouridine 22 (101.5 mg, 0.417 mmol, 74.3% yield) was

a white solid. Physical and spectral data matched that previously reported.
H
OY N 0]
Pl
HzN/\gN 5

ATP-PP; Exchange Assays. The assays were performed in 100 pL of reaction buffer (50 mM Tris-HCI/2 mM
MgCl,, pH 7.8) containing 5 mM ATP, 1 mM Nay[*’P]PP; (~4 X 10° cpm/mL), | mM TCEP, 5 mM substrate,
and 1 uM enzyme. Reactions were incubated at 25 °C for 1 h then quenched by the addition of charcoal
suspension (1.6% w/v activated charcoal, 0.1 M NasPP;, 3.5% HCIO,4). Free [32P]PPi was removed by
centrifugation of the sample followed by washing twice with wash solution (0.1 M NasPP; and 3.5% HCIO,).

Charcoal-bound radioactivity was measured on a Beckman LS 6500 scintillation counter.

Loading Assays with **C-labeled Substrates. A typical assay contained, in a total volume of 25 pL, 5 mM
ATP, 2 mM MgCl,, I mM TCEP, 20-100 uM amino acids and SAM, 10 uM enzymes, and 50 mM HEPES, pH
8.0. '"C-labeled substrate was added to each reaction accordingly (L-Ala [0.25 uCi], L-Phe [0.12 pCi], or SAM
[0.07 uCi].  After 2 h incubation at 25 °C, samples were quenched by adding 1x SDS sample buffer. Following
SDS-PAGE, radiolabeled protein was detected using a BAS-III imaging plate (Fuji Film, 48—96 h exposure)

and a Typhoon 9400 phosphorimager (GE Healthcare).

Methylation time course assays with *H-labeled SAM. The assays were performed in 150 pL of reaction
buffer (50 mM HEPES/2 mM MgCl,, pH 8) containing 5 mM ATP, | mM TCEP, 5 mM DABA or DAP, 20
uM PacP, 1 uM PacV and 2.75 pCi SAM (0.3 nmoles). Reactions were incubated at 25 °C and 25 pL samples
were quenched at different time points by adding 0.5 mL of 10% TCA (with 50 pg of BSA for visualization of
precipitated protein). Protein precipitate was pelleted by centrifugation, washed twice with 10% TCA, and
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dissolved in 80% formic acid for liquid scintillation counting. A “zero” time point was taken by processing a
reaction prior to the addition of PacV. In a parallel set of assays, DABA/DAP was incubated with PacP first for
1 h, buffer exchanged using Amicon centrifugal filter unit (3 kDa MWCO) to remove ATP and DABA/DAP

before adding PacV and SAM.

LC-FTMS analysis of PacH-bound biosynthetic intermediates. Assays were performed in 100 uL of 50
mM HEPES (pH 8.0) containing 5 mM ATP, 2 mM MgCl,, 1 mM TCEP, 5 mM amino acids, 0-10 uM
PacPUJLOND and 50 uM PacH. After ~4 h incubation at 25 °C, 0.1 M Tris and trypsin (1:5 w:w trypsin:total
protein) were added and further incubated at 30 °C for 15 min. The reactions were quenched with 25% formic
acid and analyzed by nano-capillary LC-MS using a 100 mm x 75 pum C18 column in-line with a LTQ-FT (7 T).
All MS methods included the following events: 1) FT scan, m/z 400-2,000, 2) data-dependent MS/MS on the
top 3 peaks in each spectrum from scan event 1 using collision-induced dissociation (CID) with the following
parameters: detection of all ions in the ion trap MS in profile mode, isolation width 5 m/z, activation q value
0.25, activation time 30 ms, NCE 35, and 3) FT scan, source-induced dissociation (SID) = 75, detect m/z 200—
760 (Ppant ejection assay). All data were analyzed using QualBrowser, part of the Xcalibur software packaged

with the ThermoFisher LTQ-FT. All mass values reported are for the neutral monoisotopic peaks.

LC-HRMS product assays. Assays were performed in 100 uL of 50 mM HEPES (pH 8.0) containing 5 mM
ATP, 2 mM MgCl,, 1 mM TCEP, 5 mM amino acids and uridine, 0-10 pM PacPUJLOND and 50 uM PacH
(Table S2). After 4 h incubation at 25 °C, the proteins were removed by 3 kDa MWCO filter tubes, and the
filtered reaction mixture was subjected to LC-HRMS and MS/MS analysis using an Agilent Technologies 6520
Accurate-Mass Q-TOF LC-MS instrument and a 75 mm x 4.6 mm Luna C;g column. A linear gradient of 2 to
80% CH3CN (v/v) over 15 min in H,O supplemented with 0.1% (v/v) formic acid at a flow rate of 0.5 mL/min

was used.
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Supplementary Tables

Table S1. Primers used in this study.

Primer Sequence Note

111a Ndel 5’- AAAAAACATATGAATCTACAGGATCAGAA-3’ Used for PacH expression
111a EcoRI 5’- AAAAAAGAATTCGGTTTCCTGGTGCCGTTCGCAC-3’

Hc Ndel 5’- AAAAAACATATGAGTCTGCAGAACGCAAA-3’ Used for PacH’ expression
Hc EcoRI 5’- AAAAAAGAATTCGGCTTCTCGCCGCCGTGCACCG-3’

PacW PET30F | 5°- GGTATTGAGGGTCGCATGTCTCTCACATTGGTCGA-3’ Used for PacW expression
PacW PET30R | 5’- AGAGGAGAGTTAGAGCCTTAGCCAGGCAACTCCTCCGCC-3’

126 _PET30F 5’- GGTATTGAGGGTCGCATGTCGGACAATGATGCTCG-3’ Used for PacV expression
126 PET30R 5’- AGAGGAGAGTTAGAGCCTTAGGCCTGGGGAGCGCCGTT-3’

108 PET30F 5’- GGTATTGAGGGTCGCATGACCGACAGGCTTCCCTT-3’ Used for PacD expression
108 PET30R 5’- AGAGGAGAGTTAGAGCCTTAGGATTTCCGCTCGGGAAAG-3’

112 PET30F 5’- GGTATTGAGGGTCGCATGACATTGTCTCAGGTCAA-3’ Used for Pacl expression
112 PET30R 5’- AGAGGAGAGTTAGAGCCTTAGCTGCCGGCGGACAGTGC-3’

Table S2. Assay components for pacidamycin analogs production. ATP, Ala, PacPHILONDI were included in

all assays. See Methods “LC-HRMS product assays” for detailed protocol.

1 2 3 4 5 6 7 8 9 10 11 12

Ar aa F W m-Y m-Y m-Y F F W m-Y m-Y F W
DABA + + + + + - + + + + + +

DAP - - - - - + - - - - - -
uridine - - - + + + + + - - - -
3’-deoxyuridine - - - - - - - - + + + +
5’-aminouridine + + + - - - - - - - - -
PacU + + - - + + + + - + + +
PacW - - + + - - - - + - - -
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Supplementary Figures

Streptomyces coeruleorubidus NRRL 18370
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Figure S1. Map of pacidamycin gene cluster and SDS-PAGE analysis of the E. coli purified proteins. Mini-
protein TGX gel (4-15% precast, Biorad) was used. PacH’ is a homolog of PacH from S. roseosporus.

* indicates truncated domain or domain predicted to be catalytically inactive.
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Figure S2. Synthesis and 'H characterization of synthesized 25,3S-DABA. The synthesis was based on the

published methods.*”
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Figure S3. Time course of PacV catalyzed SAM-dependent methylation. See Methods “Methylation time

course assays with *H-labeled SAM” for detailed protocol.
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Holo-PacH (b) 1711.8328 | 1711.8346 1.0 340.0858 340.0876
PacH-S-DABA (c) 1811.8965 | 1811.8990 1.4 440.1495 440.1529
PacH-S-DABA3-Ala; (d) 1882.9336 | 1882.9360 1.3 511.1866 511.1932
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PacH-S-DABA3(Alaz)-Alas-CO-Phes (f) | 2145.0290 | 2145.0319 1.3 773.2820 773.2849

Figure S4. Theoretical MS calculation of PacH-bound biosynthetic intermediates. Panel a) shows the amino
acid sequence of the PacH tryptic peptide with the active site serine highlighted in red. Panel b) shows the
structure of the active site peptide after phosphopantetheinylation, while panels c)-f) show the PacH-bound

biosynthetic intermediates. Panel g) includes calculations of the theoretical and experimental mass of the PacH

active site peptides illustrated in panels a)-f). All mass values are for the neutral monoisotopic peaks.
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Figure S6. HR-MS and HR-MS/MS of 1 measured during LC-MS.
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Figure S7. HR-MS and HR-MS/MS of 2 measured during LC-MS.
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Figure S9. HR-MS and HR-MS/MS of 4 measured during LC-MS.
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Figure S10. HR-MS and HR-MS/MS of 5 measured during LC-MS.
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Figure S11. HR-MS and HR-MS/MS of 6 measured during LC-MS.
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Figure S12. HR-MS and HR-MS/MS of 7 measured during LC-MS.
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Figure S13. HR-MS and HR-MS/MS of 8 measured during LC-MS.
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Figure S14. HR-MS and HR-MS/MS of 9 measured during LC-MS.
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Figure S15. HR-MS and HR-MS/MS of 10 measured during LC-MS.
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Figure S16. HR-MS and HR-MS/MS of 11 measured during LC-MS.
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Figure S17. HR-MS and HR-MS/MS of 12 measured during LC-MS.
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Figure S18. HR-MS and HR-MS/MS of 12’ produced from [2,3-°C2]L-Ala.
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Figure S20. Proposed complete biosynthetic pathway for pacidamycin S. The timing of
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