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Supplementary Text S2

Estimating hyperparameters through a conditional empirical Bayes approach

The choice of the hyperparameters θ0 and θ1 plays an important role in the posterior inference. When

prior knowledge can be obtained, for example, from past studies or theoretical developments, it should

guide the selection of these hyperparameters. For example, a negative h with large magnitude will put

large prior weights on Si = −1. And a large τ1 means genes with label +1 are very likely to be neighbors

of each other. However, in the absence of such information, arbitrary choices of these hyperparameters

have the risk of concentrating the prior away from the true underlying association status.

When insufficient prior knowledge is available, as is often the case in GWAS that is somewhat an initial

step of screening genes, a fully Bayesian approach might be appealing that puts hyperprior distribution

on these hyperparameters, to account for the intrinsic uncertainties. Then the posterior distribution

can be sampled from the joint space of (θ0,θ1, s) via MCMC. However, the potential problem of this

approach is that the computation is enormous, especially when n is large, and thus only a small region

of the joint sample space would be visited by the Markov chain.

To avoid the computational problem of a fully Bayesian solution, we propose an empirical Bayes

method that estimates the hyperparameters from the data. More specifically, estimates of θ0 and θ1 can

be obtained by maximizing their marginal likelihood:

L(θ0,θ1|y) =
∑
s

f(y|s,θ1)Pr(s|θ0). (10)

This can be seen as a fully Bayesian solution with uninformative hyper priors on the hyperparameters;

but rather than averaging over all (θ0,θ1), we choose a point estimator, namely the posterior mode,

to approximate the solution. This idea is similar to the one proposed by other authors under different

contexts, for example, in Bayesian variable selection [1].

However, maximizing (10) is still computationally intensive when n is large. To overcome the difficulty,

one can maximize the conditional likelihood instead:

L∗(θ0,θ1, s|y) ∝ f(y|s,θ1)Pr(s|θ0), (11)

which is proportional to the posterior (3). This is equivalent to maximizing the largest term, rather

than the whole summation, in (10). Note that L∗ is not exactly a likelihood function because s is not a

parameter.

But the normalizing function z(θ0) in Pr(s|θ0) is a function of θ0 and is prohibitive to evaluate when

n is large. So the exact solution to the maximization in (11) is infeasible. Noticing z(θ0) does not appear
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in the conditional posterior distribution, we propose to maximize the pseudo conditional likelihood:
n∏

i=1

f(yi|si,θ1)Pr(si|sNi
,θ0). (12)

Certainly (12) is not a true likelihood function because each term depends on its neighboring nodes.

One way of constructing a true conditional likelihood function is the coding technique [2] that chooses

a subset of nodes that are not neighbors of each other so that the conditional distribution of the subset

given the remaining nodes are mutually independent and can be multiplied together. Although the coding

technique results in a consistent estimator, unlike the pseudo-likelihood method, it does not use all the

nodes in the network. Besag [3] showed that the maximum pseudo likelihood estimator, in the setting of

a general Markov random field, is consistent under mild regularity conditions. And it is more efficient

than the coding estimator in simple Gaussian schemes [4].

As will be shown next, the likelihood function f1(yi|θ1) and the conditional form in (5) will greatly

simplify the maximization of (12) in that they all have closed form solutions and are very easy to solve.

When maximizing (12), s is treated as a missing variable. For a given s, the hyperparameters θ0 and θ1

can be estimated separately. For θ1, the estimate can be obtained as follows:

µ̄ = n−11

∑
Si=1

yi, d = max
(
n−11

∑
Si=1

(yi − µ̄)2, 1
)
, a = max

(
n−11

∑
Si=1

(yi − µ̄)2
/
n−1

n∑
i=1

(yi − µ̂)2, 3
)
, ν = 10,

(13)

where n1 is the number of nodes taking on the value +1, and µ̂ is the sample mean of n observations.

Setting ν to a large value ensures the prior distribution of σ2 has a wide spread. For θ0, we need to

maximize
∏n

i=1 Pr(si|sNi
,θ0), which is equivalent to the parameter estimation of a logistic regression

problem:

logitPr(si|sNi ,θ0) = h+ τ1Xi1 − τ0Xi0, i = 1, · · · , n, (14)

where the regressors are Xi1 = wiJ
(1)
i +

∑
k∈Ni

wkI1(Sk) and Xi0 = wiJ
(−1)
i +

∑
k∈Ni

wkI−1(Sk) as

defined in (5). In case the MLE θ̂0 = (ĥ, τ̂0, τ̂1) is infinite, we use a ridge estimation for logistic models [5]

that subtracts a penalty term λ(h2 + τ20 + τ21 ) from the likelihood function and solves it by the Newton-

Raphson algorithm. Then we can sequentially update s by maximizing (12) when fixing (θ̂0, θ̂1). And

these steps can be done iteratively. The algorithm is outlined as follows:

1. Set initial configuration s(0);

2. In the jth iteration, for given s(j−1), obtain (θ̂
(j)

0 , θ̂
(j)

1 ) from (13) and the solution to (14);

3. Sequentially update the labels of nodes to obtain s(j). For ith gene,

s
(j)
i = arg max

si
f(yi|si, θ̂

(j)

1 )Pr(si|s(j−1)Ni
, θ̂

(j)

0 )
∏

k∈sNi

Pr(s
(j−1)
k |si, s(j−1)Nk−i , θ̂

(j)

0 ),
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which is trivial to solve because f(·) is a normal density, and the conditional distributions have

logistic forms. Besides, only node i and its neighbors k ∈ sNi
need to be evaluated. It is easy to

see that the above optimization is equivalent to comparing the values of (12) evaluated at si = +1

and si = −1 while holding all other nodes at s(j−1)k , k 6= i, and fixing the hyperparameters at(
θ̂
(j)

0 , θ̂
(j)

1

)
;

4. Repeat steps 2 and 3.

It is clear that in each step of every iteration, the objective function (12) is non-decreasing. So the

algorithm stops when the pseudo-likelihood does not increase or reach a pre-specified iteration number.

Similar to the ICM, this algorithms seems to run very rapidly, but it tends to reach a local maximum

that is not globally optimal. Thus, multiple restarts with various initial configurations are recommended.

Simulation study

We conduct a simulation study to test the performance of the above algorithm. The network we use is

shown in Figure 3. The prior parameters are set at h=(-0.1, -0.2, -0.3, -0.4) and τ0 = τ1 = τ=(0.1, 0.2, 0.3,

0.4). Each of the 16 combinations of h and τ determines a prior distribution from which a configuration

of node labels are randomly drawn. For a given configuration of labels, p values are simulated by first

drawing random values, from N(0, 1) for Si = −1 and N(1, 1) for Si = 1, that are subsequently converted

to p values assuming they are from N(0, 1). Finally the hyperparameters h and τ are estimated by the

above algorithm. The ridge parameter is set at λ = 0.5. This process is repeated for 4,000 times, and

the mean and standard error of ĥ and τ̂ are plotted in Figure S1 and S2, respectively. The estimator ĥ

seems to be unbiased when h = −0.4 and −0.3, and it is biased low at −0.2 and −0.1. And τ̂ has small

bias when τ = 0.1 and 0.2 but is noticeably biased low for τ=0.3 and 0.4. The bias is likely caused by

the penalty on the norm of hyperparameters in the ridge logistic regression.
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