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This document contains the supplementary methods and results referred to throughout the
manuscript.

1 Single-component hubs have slightly higher degree

Intuitively, one might suppose that the more nodes there are in a neighborhood graph, the higher
the possibility of that graph disconnecting into multiple components. We therefore investigated
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Figure S1: Boxplot of yeast hub degrees for neighborhoods with 1-8 components

whether the number of components is positively correlated with the degree of the node. Instead, we
found a slight but significant negative correlation (p < 2e~16, Wilcoxon rank-sum test, computed



in R, v2.7.1). However, as shown in Figure S1, this shift is subtle and also reflects a considerable
narrowing of the distribution as the number of components grows (as expected from Figure 4).

2 Robustness to parameter variation

2.1 Edge weights

We conducted a parameter sensitivity analysis to determine the impact that our specific choices of
false positive and false negative rates had on the results. We varied the positive edge weight w, over
each value in W, = {0.6,0.65,...,0.9,0.95} and varied the negative edge weight w,, over each value
in W, = {1074,1073,1072}. For all possible combinations of w., € W, and w,, € Wy we ran our
partitioning algorithm on the yeast data and observed whether altering these parameters changed
the classifications of hubs as single- or multi-component. In choosing parameter sets to test, we took
into account the observations of [1] while also considering differences between our data and theirs.

For all tested values of w, we observe no changes to any hub-type classification compared to
the original classifications (keeping w, constant). There is also very little change to hub-type
classification when w,, is varied. Compared to the results with the original w,,, we observe 99.9%
classification identity for w, = 10™* and 97% classification identity for w, = 1072. We conclude
that the hub-type classifications given by our algorithm are independent of the choice of w, (for
we € W) and also are not sensitive to order-of-magnitude changes in the w, parameter.

We note that since the algorithm is computing a minimum cut of the graph (i.e. selecting some
minimal subset of low-weight edges), it is actually not surprising that changing the weight of the
high-cost edges w, does not affect the partition probabilities. In contrast, the value of w,, (the weight
of the low-cost edges) clearly will have an impact on whether the graph has a partition probability
greater than 0.5 or not, so changing this parameter can explain the small variations in hub-type
classification observed.

In our experiments we assigned one value to all positive edge weights and one value to all negative
edge weights. Our original plan was to incorporate variable edge weights reflecting the reported
confidence in each of the specific protein-protein interactions. However, we found that fewer than
one third of the protein-protein interactions in our combined data set were accompanied by reported
confidence scores. It is even harder to assess individual confidence levels for edges without reported
interactions, as not all data sets describe negative results. We therefore selected the constant edge
weight model because we would have had to use such edge weights for the majority of the edges in
any case.

2.2 The partition probability threshold

To determine the number of likely components in each neighborhood graph, we recurse until the
total partition probability is below the threshold ¢. We chose ¢ = 0.5 because its interpretation, at
least for the first step separating single and multi-component hubs, is a relatively intuitive “more
likely than not.”

However, the results are reasonably insensitive to varying this parameter. For example, when we
varied ¢t between 0.3 and 0.7 and compared the resulting classification of yeast hubs into “single”
or “multiple” component classes to the one described with ¢ = 0.5, we found that the classification
was the same for 99.9% of hubs with ¢t = 0.3, 100% with ¢ = 0.4, 99.9% with ¢ = 0.6, and 99.5% for
t=0.7.



3 Human GSEA analysis

This section provides details for the comparison between the implicated regulators discovered by
GSEA analysis of multi-component hubs reported in Section 3.3.2, and differentially-expressed genes
found in the same data sets. The differential expression analyses were done with the Comparative-
MarkerSelection tool in GenePattern 3.2.3, using the default t-test options except for smoothing
p-values, which was turned off.

The table below shows the results comparing the GSEA analysis of implicated gene sets to the
GenePattern differential expression analysis. The second column counts the number of differentially
expressed genes by a t-test with Benjamini-Hochberg adjusted p-value below 0.05. In the third
column, Total Genes refers to the number of distinct gene symbols used in the GenePattern analysis.
The next column shows the total number of gene sets representing multi-component hubs having one
or more components differentially expressed in GSEA, with a Benjamini-Hochberg adjusted FDR
below 0.25 (the recommended cutoff for data sets with sufficiently large numbers of samples, as in
all three of these). The number and percentage of these that are among the differentially-expressed
genes appear in the next column. The final two columns repeat this analysis for a less-stringent
criterion GSEA significance cutoff. While we don’t typically recommend using an unadjusted p-value
cutoff in practice, this allows us to look at several top results for all three of these data sets, and to
say something about the candidate regulators on the list.

Data set # Diff | Total # GSEA | # (%) of these # GSEA | # (%) of these

Exp’d Genes | Genes | FDR < .25 Diff Exp’d | nominal p < .05 Diff Exp’d
Leukemia 4708 | 10,056 1 0 (0) 81 32 (30.5)
Diabetes 31 | 15,056 25 0 (0) 52 8 (15)
P53 41 | 10,100 3 0 (0) 28 2 (7)
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