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Table S1. Correlation of B-factors and predictions by simple EN models for a set of 30 protein 
structures of ultra-high resolutions 
 
PDB ID Length CorrI

GNM CorrI
EPIRM CorrI

ANM CorrA
EPIRM CorrA

ANM

1a6m 151 0.653 0.656 0.664 0.488 0.552 
1f9y 158 0.716 0.714 0.645 0.545 0.426 
1g66 207 0.541 0.543 0.548 0.429 0.48 
1g6x 58 0.789 0.783 0.758 0.644 0.686 
1gdn 227 0.593 0.595 0.585 0.438 0.464 
1i1w 303 0.641 0.650 0.651 0.489 0.559 
1i1x 302 0.806 0.811 0.803 0.607 0.667 
1k6u 58 0.826 0.823 0.780 0.628 0.664 
1kms 184 0.436 0.435 0.416 0.359 0.349 
1kmv 185 0.437 0.437 0.419 0.345 0.384 
1kt5 175 0.639 0.697 0.647 0.614 0.558 
1lok 291 0.609 0.606 0.573 0.528 0.525 
1lug 259 0.732 0.729 0.660 0.56 0.554 
1m1q 90 0.685 0.689 0.649 0.423 0.401 
1m40 263 0.636 0.635 0.590 0.477 0.475 
1me3 215 0.651 0.649 0.587 0.481 0.472 
1me4 215 0.657 0.654 0.594 0.514 0.491 
1nwz 125 0.431 0.430 0.475 0.364 0.425 
1nym 263 0.661 0.663 0.613 0.445 0.506 
1oc7 364 0.786 0.784 0.751 0.747 0.689 
1oq5 256 0.728 0.724 0.681 0.538 0.542 
1pwm 316 0.658 0.661 0.563 0.527 0.464 
1q0n 158 0.587 0.583 0.551 0.447 0.444 
1q2q 359 0.567 0.570 0.584 0.476 0.563 
1rtq 291 0.701 0.700 0.698 0.556 0.591 
1swz 164 0.564 0.561 0.592 0.445 0.564 
1sx7 164 0.578 0.579 0.621 0.456 0.585 
1z8a 315 0.624 0.628 0.570 0.524 0.495 
3lzt 129 0.733 0.734 0.604 0.545 0.443 
4lzt 129 0.639 0.643 0.469 0.489 0.437 

         
mean  0.643±0.019 0.643±0.019 0.610±0.017 0.504±0.016 0.515±0.016 

 
The 30 non-homologous high-resolution (< 1Å) proteins are taken from a set reported previously (14). Due to the 
high resolution, anisotropic displacement parameters (ADPs) are available to all the listed proteins along with their 
corresponding temperature factors (B-factors). ‘CorrI’ is the correlation between ENM predictions and B-factors, 
and ‘CorrA’ is the correlation between these predictions and ADPs. Note that GNM is an isotropic model and 



therefore provides no ‘CorrA’ results. Paired student’s t-tests reveal superior performance of GNM and EPIRM in 
predicting B-factors to that of ANM (see the average CorrI values). Yet, the data suggest that EPRIM and ANM 
describe ADPs equally well (per the statistically identical CorrA averages). Means and standard errors are listed in 
the bottom of the table. Here, 15Å cutoff distance is taken for all the 3 ENMs to maintain an equal sparsity in 
Hessians. 
 
 
 
Table S2. Correlation of C distributions and predictions by EPIRM and ANM for a set of 64 
NMR-determined structural ensembles 
 
PDB ID Length CorrI

EPIRM CorrI
ANM CorrA

EPIRM CorrA
ANM

1a63 130 0.865 0.869 0.763 0.789 
1a67 108 0.554 0.505 0.497 0.478 
1ah2 269 0.769 0.761 0.675 0.702 
1ao8 163 0.683 0.730 0.596 0.673 
1ax3 162 0.899 0.737 0.872 0.693 
1ayk 169 0.815 0.769 0.750 0.686 
1b6f 159 0.846 0.947 0.791 0.909 
1b8q 134 0.832 0.659 0.717 0.577 
1bip 122 0.898 0.841 0.838 0.760 
1bsh 138 0.760 0.866 0.496 0.846 
1bvm 123 0.532 0.434 0.444 0.391 
1byn 128 0.616 0.521 0.562 0.488 
1clh 166 0.722 0.748 0.666 0.705 
1cur 155 0.576 0.598 0.517 0.541 
1cye 129 0.740 0.477 0.679 0.448 
1df3 162 0.561 0.409 0.522 0.383 
1e1g 104 0.849 0.792 0.656 0.737 
1e8l 129 0.502 0.534 0.397 0.480 
1eky 129 0.686 0.680 0.581 0.633 
1eq0 158 0.686 0.868 0.588 0.819 
1ezo 370 0.747 0.696 0.451 0.579 
1fhb 108 0.805 0.537 0.640 0.465 
1fhs 112 0.820 0.778 0.681 0.685 
1fr0 125 0.868 0.954 0.810 0.827 
1g9e 117 0.713 0.635 0.607 0.632 
1gd5 130 0.716 0.793 0.663 0.749 
1gio 125 0.830 0.905 0.766 0.824 
1go0 102 0.871 0.882 0.837 0.823 
1i4v 230 0.940 0.841 0.911 0.801 
1iku 188 0.738 0.785 0.629 0.735 
1inz 148 0.931 0.916 0.902 0.742 
1ivt 122 0.675 0.687 0.617 0.626 
1j1h 123 0.776 0.842 0.701 0.734 
1k19 112 0.733 0.458 0.678 0.427 
1klv 100 0.858 0.932 0.821 0.891 
1ktm 139 0.902 0.749 0.783 0.657 
1l3g 123 0.943 0.784 0.907 0.763 



1ls4 164 0.719 0.885 0.645 0.815 
1m0v 137 0.751 0.757 0.677 0.699 
1mm4 170 0.859 0.923 0.808 0.822 
1mph 106 0.619 0.737 0.570 0.659 
1mvg 125 0.712 0.240 0.597 0.325 
1nmv 163 0.851 0.789 0.781 0.667 
1orm 148 0.775 0.822 0.528 0.707 
1qce 369 0.426 0.769 0.263 0.761 
1qn0 112 0.529 0.761 0.485 0.635 
1qnd 123 0.825 0.802 0.772 0.727 
1qtt 117 0.837 0.948 0.764 0.757 
1r3b 202 0.733 0.886 0.602 0.651 
1rch 155 0.670 0.755 0.575 0.659 
1rck 106 0.710 0.679 0.640 0.624 
1ry4 128 0.933 0.926 0.814 0.851 
1sjg 112 0.424 0.438 0.365 0.388 
1soy 106 0.532 0.690 0.420 0.624 
1svq  94 0.647 0.498 0.579 0.474 
1t3v 124 0.938 0.614 0.886 0.445 
1tr4 226 0.507 0.635 0.398 0.559 
1vre 147 0.519 0.605 0.403 0.541 
1xo4 103 0.880 0.821 0.813 0.712 
1xpw 143 0.750 0.850 0.699 0.769 
1y8b 723 0.478 0.542 0.406 0.476 
2prf 125 0.647 0.603 0.533 0.533 
3msp 252 0.896 0.908 0.473 0.740 
3phy 125 0.751 0.821 0.655 0.725 

      
mean  0.737±0.017 0.728±0.020 0.643±0.019 0.657±0.018

 
The size of C distribution in a given NMR ensemble is manifested by its inter-conformer r.m.s.d. such that rmsdi 
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 where ir =  that is the average position of the i-th C over m models, and ri,k is 

the position vector of the i-th C residue in the kth conformer. Note that rmsdi is a 3-d vector containing x-, y- and 
z-components. Before applying the above calculations, all the conformers are iteratively best-aligned against their 
mean position until it converges (8). CorrI is the correlation between |rmsdi| (i=1..N) and the fluctuation magnitude 
predicted for all the N Cs by EPIRM and ANM (N is the length of the protein). On the other hand, CorrA is the 
correlation between rmsdi (i=1..N) and the fluctuation magnitude predicted for each x-, y- and z-components of all 
the N Cs. Means and standard errors are listed in the last row of the table. Paired student’s t-tests reveal CorrI

EPIRM 
= CorrI

ANM > CorrA
EPIRM = CorrA

ANM using a standard 5% threshold. The 64 non-homologous NMR ensembles are 
taken from our previous study (27) where we show that GNM gives a correlation of 0.746 ± 0.017 (CorrI

GNM) over 
the same set. Here, the ENM calculations are performed on the first conformer deposited in each ensemble. 
Although different conformer can as well be used, our former study demonstrated this does not alter the results 
statistically (27).  
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Table S3. Correlations between dominant modes and open↔closed transitions in the three 
ENMs, when either ‘open’ or ‘closed’ structures are used as the input. 
 
 

EPIRM ANM eGNM Protein Open/Closed 

o/ c
 (ko*/ kc*) o/ c

 (ko*/ kc*) o/ c
 (ko*/ kc*)

Calmodulin 1cll/1ctr 0.56/0.44 (1/1) 0.48/0.39 (6/3) 0.46/0.38 (1/1) 

Diphtheria toxin 1ddt/1mdt 0.65/0.51 (1/4) 0.48/0.35 (1/5) 0.52/0.46 (1/4) 

LAO binding 2lao/1lst 0.46/0.47 (1/15) 0.76/0.56 (1/4) 0.40/0.45 (6/15)

Enolase 3enl/7enl 0.38/0.30 (1/1) 0.31/0.25 (1/2) 0.28/0.27 (1/1) 

Adenylate Kinase 4akeB/1e4vA 0.71/0.43 (1/1) 0.79/0.54 (1/1) 0.59/0.40 (1/1) 
Thymidylate 
synthase 3tms/2tsc 0.48/0.46 (1/2) 0.44/0.22 (6/8) 0.43/0.46 (1/2) 

DHFR 5dfr/4dfr 0.45/0.40 (1/1) 0.62/0.66 (1/1) 0.32/0.37 (1/12)

Citrate synthase 5csc/6csc 0.75/0.50 (1/1) 0.89/0.39 (3/5) 0.71/0.50 (1/1) 

Yhdh  1o89A/1o8cB 0.62/0.53 (1/1) 0.46/0.41(3/1) 0.40/0.34 (1/1) 
Actin-Related 
Protein 1k8k/1tyq 0.64/0.67 (1/1) 0.73/0.56 (2/6) 0.52/0.60 (1/1) 

     

Average  0.57/0.47(1.0/2.8) 0.60/0.43(2.5/3.6) 0.46/0.42(1.5/3.9) 
 
PDB structures used for open/closed conformation are listed in the second column. In three examined ENMs 
(column 3-5), ko* is the internal mode that has the highest correlation (indicated by o) with observed open↔closed 
transitions when ‘open (unbound)’ structures are used as the ENM input, whereas kc* is the mode that produces the 
highest correlation c with the observed conformational changes when ‘closed (inhibitor-bound)’ structures are used 
as the input. For instance, the conformational transition for Calmodulin from ‘open’ (1cll) to ‘closed’ (1ctr) state can 
be best described by the 6th ANM mode with a 0.48 correlation when the ‘open’ structure is used, or by the 3rd 
ANM mode with a 0.39 correlation when the ‘closed’ structure is used. Here the paired student T-test is used to 
examine the statistical equivalence or disparity between ENM groups. As ‘open’ conformation is used as the input, 
EPIRM and ANM have statistically identical averages (0.57 and 0.60 respectively) while outperforming eGNM that 
has an average of 0.46. When ‘closed’ conformation is used as the input, the three ENMs have statistically 
equivalent performances despite the higher mean value of EPIRM (0.47). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I.    Detailed derivations of the eGNM Hessian, IΓ  matrix, from the GNM potential 
 
The GNM energy EGNM takes the form 
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Here  and  are the positional vectors pointing from the C atom i to the C atom j at an 

instantaneous moment and at the equilibrium state (readily obtained from solved X-ray or NMR 
structures) respectively. The Heaviside step function in the end of right-hand side ensures the 
values are non-vanishing only when the equilibrium departure of atom pairs is within a cutoff 
distance Rc. The difference of vectors 
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, the deviation of atom i and j from their mean values, such that 
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A schematic illustration for the relation of these vectors can be found in Figure S1.  
The matrix-vector form of the same expression reads as 
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R  is a 3N-d column vector and ,X Y and Z are column vectors of N dimension. 
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i is the positional deviation from the mean for node i at a instant moment;  is the Cartesian 

coordinate of x-, y- or z- of the node i.  
 
Γ is a NN connectivity matrix, of which the off-diagonal elements ij = -1 if i is in contact with 

j within a cutoff distance and zero otherwise. The diagonal elements ; 
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IΓ  is a 

3N3N matrix comprises NN super-elements, each of which is a 33 matrix for pair ij and the 
super-element ij takes values  ij  where I is a 33 identity matrix. I IΓ  is the Hessian for 
GNM potential. The elements in  are the second derivatives of the EGNM. The proof of 
which is shown in the Supplementary II. 

IΓ

 
The derivation of the section starts from the definition of ensemble average (or expectation value) 
of a certain physical quantity represented as a random variable; the probability associated with 
each instantaneous value of such quantity can be defined by the potential of the system at the 



value through Boltzmann relation. The potential featured in GNM here is a simple, residue-based, 
pairwise potential. 
 
For an instantaneous conformation, its probability assumes the Boltzmann relation such that 
 
Pr( R ) = exp(-EGNM(R)/kBT)  
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Let us consider a NN residue-residue (or node-node) correlation matrix C, of which the 
component Cij is . It is clear that  ji rr




 
< C >  =  ZZYYXX TTT      (SI-5) 

 

 C =







RR

RRC

d)Pr(

d)Pr(
               (SI-6) 

 

 XXT =







RR

RRXX

d)Pr(

d)Pr(T

=







ZYXZYX

ZYXZYXXX

ddd)Pr()Pr()Pr(

ddd)Pr()Pr()Pr(T

=

ZZΓZYYΓYXXΓX

ZZΓZYYΓYXXΓXXX
















T

2
exp(

exp(
























d
Tk

d
Tk

d
Tk

d
Tk

d
Tk

d
Tk

T

B

T

B

T

B

T

B

T

B

T

B

)
2

exp()
2

exp()

)
2

exp()
2

exp()
2





 

 

= 
















XXX

XXXXX

d)
2

exp(

d)
2

exp(

T

B

T

B

T

Tk

Tk





                           (SI-7) 

 
The Gaussian integrals in the denominator and the integral in the numerator can be solved using 

the equalities  a
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Note that here the imposed condition <XXT > = <YYT > = <ZZT > is not an assumption 
if GNM potential is so assumed in the Eq.SI-1. However, in Flory’s treatment, polymer chain is 
assumed Gaussian in the first place (10). 
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Figure S1 (a) The relative orientations of vectors ijr


, 0

ijr


,  jr


and  ir


(b) The elastic potential of

a tri-peptide molecule, represented by C atoms only. The cutoff Rc here is set small enough for 
the atom pairs 1-2 and 2-3 in contact but not for 1-3. Provided a certain pair ij (ij) is in contact 
(their linear separation < Rc), the off-diagonal element ij of the connectivity matrix  is set to 
-1; otherwise 0. The diagonal elements are the negative sums 

ual row (or colum
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II    To derive the eGNM Hessian, IΓ  matrix, from GNM potential 
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The fact that GNM modes contain rigid-body rotation was not widely conceived before. One of 
the reasons is that it is hard to examine rotation in the N-dimensional space instead of 3N. eGNM 
concept provides a correct scaffold and resolves modes in 3N-dimension hence an easier 
confirmation and characterization of external rotation in modes. 
 
 
 
III    Derivation of the Hessian, H, based on ANM potential 
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For those j that contact with i, we take the first derivative of (thereafter denoted as E) 

against to obtain 
ANME

ix
 

Fi
x =

ij

o
i

o
jij

j
ijij

i

ij

j
ijij

i L

xxxx
LL

x

L
LL

x

E )(
)()( 00 







         (SI-13)  

 
Take the derivative of the above obtained again to obtain the second derivative of E 
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Similar approach extended when i is not equal to j, 
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The 3N3N Hessian H can therefore be constructed. Also, it can be derived similarly as 
described in the Section I that  
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The diagonalization of Hessian gives six vanishing eigenvalues such that  
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IV  Three trivial modes obtained from diagonalization of Hessian when the model is 
translational invariant 
 
In Cartesian space, for any model that is translational invariant (such as non-condensed GNM), 3 
zero eigen modes are generated in the diagonalization of Hessian, and another 3 zero modes are 
generated if it is also rotational invariant (such as ENM). A simple explanation is as follows, 
which justifies why eGNM Hessian, IΓ , results in 3 zero eigen modes for the external 
translation.  
 
Let us consider a one-dimension system along which N degrees of freedom are located, and the 
overall energy for this system is E(x1, x2, .. xN) which is a function of positions of all the d.o.f. 
When the system is translational invariant in energy,  
 

E(x1, x2, .. xN) =  E(x1+c, x2+c, .. xN+c)             (SI-20) 
 

where c is the amount of displacement by which all the d.o.f systematically translated. The E is 
not changed with c to be translational invariant. The first derivative of E against c should 
therefore be zero. That is 

dc

dx

x

E

dc

dE j
N

j j

 



1

0                       (SI-21) 

We also note that the term 
dc

dx j  is unity when the system is in rigid-body translation ( has to 

change as much as c does), which leads to 
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We take partial derivative against xi on both sides of the above expression to obtain  
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are the Hessian elements in those simple models discussed in the study. According to the 

derived equality,               
 

H v = λ v = 0                              (SI-23) 
 
where v is the normalized N-d column vector for the external translation of the system such that            

v = [
NNN

11
,

1
 ]T.                         (SI-24) 

 
Hence, it becomes clear that translational invariance exemplified in the one-dimension system 
results in one zero eigen mode. In the Cartesian space, we therefore obtain three trivial modes 
due to the translational invariance. The trivial modes that result from the rotational invariance of 
the potential (such as ANM) can be rationalized in a similar way.  



V  Force and Torque experienced in GNM- and ANM-defined Potential 
 
GNM - Energy function defined by vectorial differences of atomic displacements 
 
According to Eq. SI-1, force acting on atom I is 
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Total force acting on the molecule. 
 

0rrrfF  


))(( 00

1
ijijij

N

ij
c

N

i
itotal RH            (SI-26)             

 
To derive Eq. SI-26 we use and ij ji r r 0 0

ij ji r r . 

 
Torque acting on the molecule; 
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To derive Eq. SI-27, ,  ij ji r r ij ij r r 0  and 0

ij ij ij  r r r  are used. We note that τ 0  

when for all 0// ijij rr 0, ij cRi j r . Non-vanishing torque acts on the molecule when molecule 

is subject to a rigid-body rotation. Hence, GNM has translational but not rotational invariance. 
 
 



 
ANM - Energy function defined by the difference of inter-atomic distances 
 
We know that ANM potential is the sum of a function  that is a function of rij such that 
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where, ij ijr  r . The force acting on atom I is  
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Total force acting on the molecule; 
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To derive Eq. SI-30, we use and ij ji r r ij jir r . 

 
Torque acting on the molecule; 
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To derive Eq. SI-31, the relation ij ji r r and ij jir r are used. Thus there is neither total force 

nor torque that acts on a molecule for an energy function defined as Eq. SI-28. Hence, ANM has 
both translational and rotational invariance. 
 
 
 



VI    Normal mode refinement study by Kidera et al sheds light on the contributions of 
internal and external motions to B-factors 
 
 

 
 
Figure S2 The figure is reproduced from Akinori Kidera, Koji Inaka, Masaaki Matsushima and 
Nobuhiro Gō (1992) "Normal Mode Refinement: Crystallographic Refinement of Protein 
Dynamic Structure II. Application to Human Lysozyme" J. Mol. Biol. 225, 477-486 
 
 
 
 
 
 



The panel (a) of Fig. S2 demonstrates three types of motions – total, internal and external. In this 
normal mode refinement study, the contribution of internal vibrations to B-factors are modeled 
by all-atom normal mode analysis (NMA) and contribution of external motions to B-factors are 
modeled by TLS model (21). Two facts are to be noted here.  
 
First, indeed, external motions have a dominant contribution to the size of the total fluctuation, 
0.53/0.70, when internal motions take the share of 0.45/0.70;  
 
Secondly, despite of larger contribution of external motions in its size, the shape of the profile of 
the total fluctuation are dominantly determined by that of internal motions.  
 
External motions on the other hand have a relatively flat profile (featureless). Abscissa is the 
residue index; Ordinate is the r.m.s fluctuation (Ǻ).  We know that B-factors are the size of 
atom fluctuations (the total fluctuations) multiplied by a constant. We also know that the 
fluctuation profiles of residue internal motions can be predicted by ANM and EPIRM. Pearson 
correlation between these two profiles (B-factors and internal motions) indicates given models’ 
applicability to describe B-factors. It is mathematically trivial but worth noting – the correlation 
coefficient does not change with the absolute size of the two profiles. The correlation is high as 
long as the shapes of the two profiles are similar. This mathematical judgment has been used in 
most of (if not all) the published studies. 
 
 
 
 
 
 
 
 
 
VII  Further remarks on EPIRM  
 
Understand the difference between ANM modes and eGNM modes  
 
Derived from a potential that is translation/rotation invariant, ANM modes contain no 
contributions to the translational momentum and angular momentum of the system. Take a 
tripeptide system for example (Fig S3). A given ANM internal mode UA has nine components in 
the Cartesian coordinate and UA = [V1

T 
 V2

 T 
 V3

 T]T ; Each Vk is a 3-d column vector indicating 
the size and directions of one residue of the three; ‘T’ is transpose. Let us assume the simplest 
case where the mass center of the system does not move and the system does not rotate (however 
the following discussions also hold for systems translate in constant velocity and/or rotate in 
constant speed). The following two conditions have to be held. 

(1) = 0 , mk is the mass of residue k. Let us assume equal mass for the residues 

such that m1 = m2 = m3 = m 
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Rigorously speaking, every Vk in the aforementioned conditions should be replaced by cVk/ 
where c=(kBT/γ)1/2 and =2(1/γk)

1/2 in order to have Vk in the unit of velocity; otherwise Vk is 
dimensionless. 

Every ANM internal mode fulfills these two conditions; On the other hand, non-trivial eGNM 
modes (led by nonzero eigenvalues) fulfill the first condition but not the second.  
 
How is a EPIRM mode derived from a eGNM mode? 
 
This nonzero L is also known equal to I. I is the 3×3 moment of inertia tensor. 
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The angular velocity can be calculated as ω = I-1L ; the direction of vector ω points to the axis 
that the whole system rotates about. As a result, one way to remove such rigid rotation is to 
remove the contribution to this rotation from each residue. In another word, we should remove 
the component in Vk that directly contributes to ω. This contribution is known to be ω×rk.  
Hence, Vk - ω×rk would result in a new vector Vk’ that does not contribute to the rigid-body 
rotation. Reassembling the Vk’ (k =1..3) returns us the EPIRM mode. 
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Figure S3 A tripeptide system motions described by a given normal mode 
 
 
 
 
 
 



VIII  ANISOTROPY predictions by EPIRM and ANM 
 
In high-resolution PDB structure files, there are 6 anisotropic displacement parameters (ADPs) 
associated with each atom. These ADPs are three diagonal and three off-diagonal elements of a 
3×3 covariance matrix U associated with the Gaussian probability distribution of atomic 
fluctuations in space (14).  

The symmetric matrix Ui for atom i =  where Uxx, Uyy and Uzz are the ADPs 

forming the diagonal elements while Uxy, Uyz and Uzx form the off-diagonal elements of Ui. 
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Diagonalizing Ui renders three eigenvectors and three eigenvalues. The eigenvectors give three 
principal axes of an ellipsoid and the eigenvalues give the spread of the ellipsoid on these axes. 
ISOTROPY is defined as the minimal eigenvalue divided by the maximal eigenvalue. A unity 
value would mean perfect isotropic fluctuations while values close to zero suggest highly 
anisotropic fluctuations of the atom.   
 
ADP-derived ISOTROPY for all the C atoms in the proteins listed in Table S1 are computed 
and compared with the ISOTROPY derived from the covariance matrices of EPIRM (Eq. 4) and 
ANM (Eq. SI-18) for the same C atoms. We find an average correlation of 0.3144±0.031 
between experiment and EPIRM, and that of 0.3306±0.028 between experiment and ANM. The 
two correlations are statistically identical. The low correlations are consistent with our previous 
finding (14). 
 
Care should be taken that even perfect predictions for ISOTROPY do not necessarily suggest any 
good prediction for directionalities and sizes of atom fluctuations. This is self-evident from the 
definition of ISOTROPY.  
 
GNM is an isotropic model and ANM is anisotropic. One may intuitively think that ANM would 
perform less well than GNM in predicting atom dynamics that are highly isotropic. We examine 
such intuition using the protein set in Table S1. We define an AVERAGE ISOTROPY for a 
protein which is the average of the ISOTROPY values of all the Cs in that protein. On the other 
hand, the correlation between B-factors and ANM/GNM predictions for this protein is calculated. 
We plot the quantity (AVERAGE ISOTROPY, correlation) for each of the proteins in the figure 
below (Fig S4).  
 
The result shows both GNM and ANM better predict B-factors when proteins have higher 
dynamics isotropy (Fig S4). The ISOPTROPY-dependent correlation increase demonstrates a 
0.41 correlation for both GNM and ANM (Fig S4). This slightly counter-intuitive result indicates 
that ENMs generally better predicts isotropic data (e.g. sizes of the fluctuations) than anisotropic 
data (e.g. directions of the fluctuations) despite of their inherited assumptions, namely, isotropic 
or anisotropic. This is also noted by other studies (13, 14, 16). 
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Figure S4 B-factor predictability (Correlation) versus dynamics ISOTROPY plotted for 30 
high-resolution structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



IX  Catalytic residues of Ricin Hydrolase distributed near the (external) rotation axes 
identified from the first two eGNM modes   
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Figure S5 Distribution of catalytic residues of Ricin Hydrolase near the rotation axes 
1 and 2 are the angular velocity vectors indicating the size and direction of the external 
rotation contaminated in the eGNM mode 1 and 2, respectively. The blue arrows, going through 
the mean locations of the proteins, point toward the directions of 1 and 2, but their 
exaggerated sizes do not correspond to the real magnitude of 1 and 2. The yellow arrow 
pointing from the i-th residue indicates the vector (1/c)ωk×ri (see Eq. 6 in the main text; k= 1 or 
2 herein) that is the componential contribution of a certain residue’s movement to the rigid-body 
rotation, or specifically, the . Note that the length of the arrows are drawn in proportion to the 
magnitude of (1/c)ωk×r but exaggerated for easy visualization. The C atoms of the catalytic 
residues Y80, V81, G121, Y123, E177 and R180 are shown in white spheres. In the top views, 
the small pink arrows indicate the tips of the rotation axes.  
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