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1 Supplementary Information

1.1 Proof of signw;) = —signw;,,) for all i € {1,...,n—1}

Substitutingx;, 1 from equation (8) into equation (9), we obtain that

w = Ti(Wiw ; — Wi_lEi+1k:—jWi*+1), fori € {1,...n—1}. (SI-1)
From the first of equations (3), setting the time derivatitegero we obtain
that 0= —ow. Thus, from equation (SI-1) with= 1 we obtain that

Wi = —TaWj kiEZW* (SI-2)

Base caseWe prove that the property holds for 1. SinceTlv_VEk)kzk—E2 > 0,
equation (SI-2) proves the base case.

Induction StepAssume thasign(w; ,) = —sign(w;"). We prove thasignw;) =
—sign(w;, ;). Employing equation (SI-1), we have that

— . kip1E
W) = Ty = T, =5 =

%

To simplify notation, letG; 2 T;W; andG; £ T;W,_ % Then, we have that
W = Gw" ; — Gow;, ; from which we obtain that

i+1

G1

\Nr+1= G_2

W - G—ZW* (SI-3)

In order to proceed, we consider two case$; > 0 andw” ; < 0 and employ the
fact thatG; > 0 andG; > 0. (Case 1) v ; > 0, then by the induction assumption
we have thawy” < 0; hence by (SI-3) we obtain that

| L+ 2|\/\fi‘|20.

(Case 2) Ifwi_; <0, then by the induction assumption we have tiat 0; hence
by (SI-3) we obtain that

W

i+1

Gy 1
= ——W |- =—w]<0.
Gzl -1l Gzl =

This proves thasignw;') = —sign(w:, ;) foralli € {1,...,n-1}.
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1.2 Derivation of theexpressions¥; for i € {1,...,n—1}
Here, we seek to show that foe {1, ..., n — 1} we have that

Kis1Eienr K
(Wi 1+Kis1)? Kir1

i (L (0 R )

Yo =0.
We have tha¥y = 0 becausev, = 0. We show identity (SI-4) by induction on
the cascade stage numler o
Base caseFrom equation (SI-2), we have tha} = ~T;W%Z2w; from which
we obtain thatw;| = TWy'%$22\w;|. Employing equation (11) with = 1 and
simplifying yields

Y =

KEIT
l+(W P [1+ (

and

k
Wil = —— = IW3l.
1+Ei (14 (14 &)
1 W,

0

Thus¥; = ——2—— and the base case is proven.
1+E1(l+%(1+%))
0

Induction step: Define y; =

Kit1BG+1)T K1
(W+1+Kl+l)2 Kiv1
K'E'T S| 1+t (1+_* (1+(1+ ) W*i* _
(WI K) Wi_1 Wi_1
sumew; ;| = ¢i_1|w;|. We prove thatw/| = yilw;, ,|.
Since we have thamgr(v\f‘) = —signw"_ ;) andyi_1 > 0, we can rewrite the
induction assumption as;' ; = —y_1W;". Employlng equation (Sl-1) along with
the induction assumption, we obtain that

))] and as-

1+

— Kis1E;
W = —TWigi_ Wi — TiW,_ 2 1'+1mrf+l.
+
Solving this equation fow;, we obtain that
TW*_ Ri“’]..Ei‘f’l Ri‘FJI.Ei‘f’l
W' = _$V\¢+1 == kHl— V\fik+l’
1+ TiWiyiog Ly,
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from which, employing the expression Bfgiven in equation (11) and the expres-
sion of W; from equation (5), we obtain that

Ei+l<il'.Ei+1
M:_ — K K; = w\ W V\[;<+:|.
b (1 g (2 (2 ) )
Since o
I(i-¢-1Ei+1
ki+l :wi
E K Ki W\ W '
b B[t (e g (o (2 R )

it follows that|w?| = y;w.",,| and hence tha¥; = y; for alli € {1,...,n—1}.

1.3 Derivation of theupper and lower boundson ¥ for i € {1,...,n—1}
The next result shows an upper bound for the equilibriuma&iﬂ?.

Lemma l. Define

R .
3 I = O
) minfweg, —K ic(L..n and (5+1)E£—120
s o] et wo (fed
Wi ic(l..n and (%+1)VEV+;—1<0.
B (SI-5)
ThenW, < B;, i €{0,...,n}.

Proof. The value ofWS is given by equation (4), so that the first case follows
immediately. The third case follows trivially from the camgation equation (1).
To prove the second case, consider tat+ Y; < Wir, which along with
equations (7) and (6) lead to
ki EiT_ N EiT_ < W
kipp K 14K
W W

Since we also have thé% + 1) \I/ETI,TT — 1> 0, we obtain that

W* < Ki

b= ki E;
(E*l)w—f—

. —k .
Since alsdV; < Wi, the second case is shown. ]

(SI-6)
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The next result shows an upper bound and a lower bound forales ofE;.
Lemma 2. The value of; satisfies
Eir <E<ET
(Ki+ Bi)(1+ E) Ki

with B as defined in Lemma 1.

Proof. Employing equation (6), we obtain that
1
1+

Ki
W,
Therefore,

E =Er -Yi=Er - —E&ir = ;
1+W l+?_'

Substituting the above into equation (10) results in

—~ 1 1
Ei= (_* — ] — |EiT.
Wi +Ki 1+%

This is a monotonically decreasing functionWwf. Since 0< W, < B; by Lemma
1, the result follows. ]

We can thus obtain an upper bound on the g4iat every stagé which is not
recursive nor depends on the equilibrium value. Specificginploying Lemma 2
and Lemma 1 we obtain that

kix1 Eq+yr [ =
lPi < kl'+1 Kit1 — S i+1 Kit1 — )
1+ —ET (1+k'(1+ )) 1+ —ET (1+ﬁ 1+ﬁ)
(Ri+Bi)(l+5i_) ki Wi_y (Ri+Bi)(l+E—i_) ki ( Bi*l)
Kj Ki
(SI-7)
ko1 BT
As a consequence, havirg M1 Koy < lis astficient condition for

1+WT(1+B:)(1+ (1+ B:<|1))
attenuation at stagewhich is not iterative and does not depend on the equiliriu
value.
From the expressions &F; and the lower bound of; from Lemma 2, we
can also obtain a necessary condition for attenuation al estage as follows.
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Specifically, to have attenuation at stageve must have tha¥;_; < 1, so that by
Lemma 2 we obtain that
Ri+lEi+1
‘“Pi - — E ki+1 V_V* V_V*
LB o (o E) )
Ei+1Ei+1
ki+1

|

Since¥; < 1, we have that necessarily the right-hand side must be amnthkn
1. If the necessary condition is violated at stagen either stage— 1 or stage
amplify a perturbation as it propagates from downstreanptiraam.

>

1.4 Proof that sign(z) = —signz,1) and derivation of @; for all i €

{1,...,n-1}
To simplify notation, define for ail € {1, ..., n}
K w W
Fi .= Ej K_Pi (1 + (1 + :') ﬁ‘lﬁ_l}, (SI-8)
k‘ i i-1
so that¥; can be re-written as
Ei‘FlEi‘Fl
¥ = L (SI-9)

1+E+E%+Fi

Here, we seek to demonstrate tean(z) = —signz,,) foralli € {1,...,n—1}

and that _
o Ef+F B |
1+E+ Eiﬁ +Fi E,+1 1+ Fia

whereF; is given by Equation (SI-8). )
We writez in terms ofw;,,. From equations (8), we have that= E W', SO
that

|+1
Ei. W
K i+1

i+1°

Z = V\f*+y,+x,+1_v\f‘(1+E)+

foralli e {1,..,n-1}. Sincew; = -¥jw;, ,, we have that

i+1’

e
Z = +1(1 + E; i)+ k:+l El+l\/\[r+1 = ( Yi(l+E)+ k:_jEiJrl] V‘ﬁlr
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Substituting the expression W from equation (SI-9) and rearranging the terms,

we obtain that B

_ =k

Kir1 = Eig +Fi

z=(%ﬂEnJ — W, (SI-10)
ki1 1+E+EL+F

ek

A Ei it +Fi . . .
SincegE,1 2 0 and(%) > 0, it follows thatsign(z) = signw:" ,) and
1 LE+E g +Fi

therefore also thasign(z,1) = signwi,,). Sincesignw,,) = —signw;,,), we
also havesign(z) = —sign(z 1) foralli € {1,...,n—2}.

To prove thatsign(z,-1) = —sign(z,), we write x,.1 as a function ofv;,. Em-
ploying equation (SI-1) and the fact that , = —'¥,_1w},, we obtain that

Wy, = _TnV_Vn\Pn—l\N; - TnV_V:_1Xn+1-
Solving forw;, and simplifying finally yields to

1

Wp=-———""—
1+Ey+En +Fy

Xn+17

so thatxn,1 = —(1+En+ En% +Fn)w:. This equation, in turn, leads to (considering
thatz, = W, + Yn + Xn+1) B
Zh = —(En%
which shows thasign(z,) = —sign(w;;). Since, from the first part of the proof,

signz,-1) = signw;,), we have thasign(z,-1) = —signz,). Thereforesignz) =
—signz.1) foralli e {1,....,.n—1}.

+ Fowg, (SI-11)

Ei%*":i ;?;lgiafi . .
We next show tha®; = ' L . Employing equation (SI-

~ —k — k
LE+E g +Fi ) B +Fin
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10) in the definition ofd; for i € {1, ...,n — 2}, we obtain that

Eki_
ki )—Eik_i+_F' W
(k”l (1+E+E§+Fi I+l

Zis1 Koo = E.+1k:*1+F|+1 W
Kiup —i12 i+2
1+E|+1+E|+1 +F|+1
EH—l e EKF*—Fi
'_l i+1 Y % _
* 1+Ei+Eik—_'+Fi
= Kot Wi
E.+2~ E|+1k +F|+1
Kit2 i+2
1+E|+1+E|+1k:+1+|:i+1

To= §—+F-

ki+1 E ) 'K ! - =

ko =+l T = o - =

(k”l LE+E 4, %
o= E”lk +F'+1 1+ B+ E'+lk. + Fis1
Kit2 Ei+2
1+E|+1+E|+1 +F|+1
E. +Fi L E
1+E+E& +F Ei+1|q'—j +Fis
EiE_i+F EAEM .
Since <1 andk— < 1, we have thatb; < 1. To determine
l+E,+EIki +Fi E,+1k 1+F,+1

®,_1, we recall from equation (SI-11) thi,| = (En% + Fp)lw;l, so that

k. = En-12 +Fno1
(k8 et
1+En_1+En 1kn +Fn 1

Zn-
(Dn—l = ! =
Zn (Eng + Fn)Ws
3 %En Ipgn—l t:j + Fn-1
En% + Fn -

= k
nE, En-1 1 +Fn1
Slnce‘““—n <1and——&- L
En k2+Fn 1+En 1+En 1k +Fn 1

< 1, we also have thab,_1 < 1.

1.5 Proof that [w!| < |dt]

We find an explicit expression fc%% and show that it is less than 1.
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By setting the time derivative equal to zero in the last ofaiquns (3) and
solving forx,,1, we obtain that

1 =,
X1 = (Dw}, + Widr). (SI-12)

I"I+ an+1

From equation (9) we have that
Wi = T (Wi _y = Wi _1Xn.1). (SI-13)

Substituting equation (SI-12) into equation (SI-13) ansbatoting thatw;, , =
—¥n-1W;,, we obtain that

_ — 1 — —
Wh = T | =Wn'¥n-1Wp = Wiy ———— (DWF; + WndT)]-
Wh+ 2ot
So we have that
Wt To | W W + W B | = T |-W L, — T Wid
nt Inf WnTnaW, + n_lm n|=Tn|— n_lw nOT |-

To simplify notation, let

P, £ ! (S1-14)
_ — —
1 + Tn (Wnl}ln_l + Wn_lw;:_'.% D)
— 1

P22 ThW,_1 = — — " (SI-15)

1+Eq(1+ 21+ =)

W*
ppe_ Vo (S-16)
Wh + 2

Therefore, we have that;, = —P;1P,P3dr, i.e., % = P1P,P3. From the expres-

sions of P; and of T, from equation (11) we can see tiRt< 1 fori € {1,2, 3}.
Therefore,"c”j'k—Tn| < 1.

This result implies that regardless of the number of stagéisegparameters of
the cascade, we always have attenuation fdginthe disturbance downstream, to
w;, the active protein at the last stage.
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1.6 Proof that |z,| < |d7]

In the previous section we obtained thet = —P1P,Psdr with P; given by equa-
tions (SI-14)-(S1-16). From equations (SI-12) we obtaiatth

— 1 — —
Zn = Wo+Yn+Xne1= 1+ Ep)w,+ _*—M(DWE"’WndT)
Wn an+1
- D A
= {1+En+—*—5n1]er1+—* nénldT
Wn + an+1 n an+1
= 1+E D P1P,P W d
- - + n+_*+§n+1 ( 172 3)+ * 5«n+1 T
n " apa n " an
- D Wi,
= [— 1+En+ _*—anl](Plpzps) + —*—nanl)dT
Wn + an+1 Wn + an+1
- D
= P3 —(1 + En + _*——)(PlPZ) +1 dT.
W, + g:*i

Since we have already shown tta§ < 1, in order to prove thaﬁ&'l <1, it
sufices to show that

= D
0<(1+ En+W)
+1
Wn+an+l

(Pl P2) <1

Since every term in this expression is positive, the leftchaequality follows. In
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order to show the right inequality, we expaRgdandP, and simplify as follows:

- D
(L+En+ —=——57)(P1P2) =
nt ant1
(1+En+ D ) ToWn-y
n —x =
Wn + ;ﬂ 1 vyl fyvi 1 =
+1 + Tn Wn\Pn_]_ + Wn_lW* Tl D
n+an+l

E K14 Koy 4 Wa N
1+E,(1+ kn(1+ v_v;,l)) + W:H\P”‘l + W;:+;n+i D

which shows that (& E,, + V_V*Pﬁml )(P1P2) < 1 as required.
n"ani1

1.7 Derivation of therate constants for a weakly activated pathway

The diferential equation modeling cyciés given by

Xi = aW (Wi =W =X =Y = Xiy1) — @& + k)X
W = kX — bW (Eir — Vi) + biY; — Xis1

Yi bW (Eir - i) — (bi + k)Yi.

The assumption of having a weakly activated pathway imphas\W:", Y;, Xi;1 <

Wir. Also, sincea;, @, by, bi > ki, ki, we can assume that the first and last equations
are at the quasi steady state, thatisx 0 andY; ~ 0. This leads to the reduced
model for the cycle given by

Lo KWITWE, ki Eir W
! Ki +VVi*_1 Ri +VVi*‘
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First stage (i=1) Second stage (i=2) Third stage (i=3)

~0.005 0.6 o
05
o oot < <
= = 04 = -100
£ -0.015 < S
= = =
e * 03 e -150
2 o2 E] E]
0.2
-200
-0.025 o1
-0.03 0 -250
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
dr(nM) dr(nM) dr(nM)

S| Figure 1:Attenuation and sign-reversal in a three-stage cascade: Example 1. The
x-axis shows the value of the perturbatihnand the y-axis shows the steady state value of
the resulting perturbations;, w;, andw;. Simulation is performed on the full nonlinear
ODE model given by equation (2). The parameters of each stage taken from (30)
and are given by, = 240(min)?, ko = 6.3(min)?, ks = 9(min) %, ky = 360(miny?,
ko = 360(miny!, k3 = 60(minjt, a; = 18(NMminy?, a; = 1981(nM min)?,

az = 9783(nM min) %, ay = 9783(NM min)?t, @ = 960(min)?!, @ = 25.2(min)™?,
a; = 36(miny?t, @ = 36(min)t, by = 115(nM min)?%, b, = 115(nM min)?, bs =
45455(nM min)%, by = 1440(miny?, b, = 1440(min)?, bs = 240(minY?, Esr = 3.2nM,
Eor = 224nM, Eir = 224nM, War = 360nM, Wor = 180nM, Wit = 200nM,
W, = 100nM, andDr = OnM.

Hence, ifK; > W" ; andK; > W, we have that the phosphorylation rate constant
is given approximately byWir /Ki while the dephosphorylation rate constant is
given approximately b Eir /K;.

1.8 Examplesof attenuation in three-stage cascades

Here, we illustrate three more examples of three-stageadasc As explained

in the main text, the theoretical predictions hold for altgraeter values if the
perturbationdy is suficiently small. Sl Figures 1, 2, and 3 provide three examples
for nominal parameter values given in (30) and (31), and kbreene values in
the interval constructed about the parameter set of (34peaively. In all cases,
surprisingly, the relationship betweei andw; is approximately linear even for
large perturbationdy.

1.9 Convergence of probability in the numerical simulations

Sl Figures 4, 5, 6, 7, and 8 show the convergence of the pridiesbto their final
values.
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First stage (i=1) Second stage (i=2) Third stage (i=3)

wi(nM)

*ON 9

1

-4 0 -20
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

dr(nM) dr(nM) dr(nM)

S| Figure 2: Attenuation and sign-reversal in a three-stage cascade: Example 2.
The x-axis shows the value of the perturbatthnand the y-axis shows the steady state
value of the resulting perturbationg;, w;, andw;. Simulation is performed on the
full nonlinear ODE model given by equation (2). The paramsets each stage are
taken from (31) and are given by = 6(min)%, ki = 6(min)%, a; = 0.06(nM min)2,

a» = 0.198(NM min)?, a3 = 1.2(nM min) %, a; = 1.2(nM minYy ™%, @ = 24(min)?, @ =
25.2(min)™, @ = 36(miny*, @ = 36(min)*, by = 0.03(nNM min) 2, b, = 0.6(NM min)™?,

bs = 0.3(nM min) 2, by = 30(min) %, b, = 48(miny?, bs = 24(min) ™, Esr = 300nM,
E,r = 200nM, E;r = 300nM, War = 400nM, Wor = 200nM, Wit = 300nM,
W, = 200nM, andDt = OnM.

x10™*  First stage (i=1) Second stage (i=2) Third stage (i=3)

-05
= g 0.03

=
*O
‘91 0.02
3

wi(nM)
n
wj(nM)

0.01

-15 0 -0.2
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

dp(nM) dp(nM) dr(nM)

S| Figure 3:Attenuation and sign-reversal in a three-stage cascade: Example 3. The
x-axis shows the value of the perturbatihnand the y-axis shows the steady state value of
the resulting perturbations;, w;, andw;. Simulation is performed on the full nonlinear
ODE model given by equation (2). The parameters of each stage taken from the
extreme values of the intervals constructed about the peteamin (30). These are given
by k; = 6.3(min) %, k, = 6.3(min)™%, ks = 600(min) L, ky = 600(min)?, ko = 6.3(min)™2,

ks = 600(min)?, a; = 4540(nM min)?, a, = 18(nM min)%, ag = 4540(nM min)?, ay =
18(nM min) %, a; = 25.2(min) ™%, @ = 2400(min)?, @ = 2400(miny?, @ = 25.2(min)™?,

by = 4540(nM minY?, by = 25.2(min)%, by = 2400(miny?, by = 252(min) %, Ear =
224nM, Eor = 3.2nM, E;7 = 3.2nM, War = 180nM, Wor = 360nM, Wit = 360nM,
W, = 100nM, andDr = OnM.
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simulation number

Sl Figure 4: Three-stage cascade. Percentadg tfat are less than one calculated after
every new simulation run. The plots converge to the valuesmgin Table 2.
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99.4 99.4
97
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99 99 96.5
0 0.5 1 15 2 0 2000 4000 6000 8000 10000 0 05 1 15 2
simulation number 410 simulation number simulation number y10*

S| Figure 5: Three-stage cascade. Percentadjg tifat are less than one calculated after
every new simulation run for the three intervals about thminal parameter values taken
from (30) (x = 2 in the left plot,x = 5 in the center plot, ang = 8 in the right side plot).
The plots converge to the values given in Table 3.
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Sl Figure 6: Three-stage cascade. Percentadg tfat are less than one calculated after
every new simulation run for the three intervals about thapeter values taken from (31)
(x = 2in the left plot,x = 5 in the center plot, angd = 8 in the right side plot). The plots
converge to the values given in Table 4.

L1 Y

20 b

0 2000 4000 6000 8000 10000
simulation number

S| Figure 7: Ten-stage cascade. Percentag¥ dhat are less than one calculated after
every simulation. The plots converge to the values giveraiold 5.
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S| Figure 8: Cascade with increasing number of stages. Rege of¥; that are less than

1 calculated after every simulation run. All the plots caigee This simulation data was
used to generate Figure 5.



