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1 Supplementary Information

1.1 Proof of sign(w∗i ) = −sign(w∗i+1) for all i ∈ {1, ..., n− 1}

Substitutingxi+1 from equation (8) into equation (9), we obtain that

w∗i = Ti(Wiw
∗
i−1 −W

∗

i−1Ẽi+1
ki+1

ki+1
w∗i+1), for i ∈ {1, ..., n− 1}. (SI-1)

From the first of equations (3), setting the time derivativesto zero we obtain
that 0= −δw∗0. Thus, from equation (SI-1) withi = 1 we obtain that

w∗1 = −T1W
∗

0
k2Ẽ2

k2
w∗2. (SI-2)

Base case:We prove that the property holds fori = 1. SinceT1W
∗

0
k2Ẽ2

k2
≥ 0,

equation (SI-2) proves the base case.
Induction Step:Assume thatsign(w∗i−1) = −sign(w∗i ). We prove thatsign(w∗i ) =

−sign(w∗i+1). Employing equation (SI-1), we have that

w∗i = TiWiw
∗
i−1 − TiW

∗

i−1
ki+1Ẽ(i+1)

ki+1
w∗i+1 .

To simplify notation, letG1 , TiWi andG2 , TiW
∗

i−1
ki+1Ẽ(i+1)

ki+1
. Then, we have that

w∗i = G1w∗i−1 −G2w∗i+1 from which we obtain that

w∗i+1 =
G1

G2
w∗i−1 −

1
G2

w∗i . (SI-3)

In order to proceed, we consider two cases:w∗i−1 ≥ 0 andw∗i−1 ≤ 0 and employ the
fact thatG1 ≥ 0 andG2 ≥ 0. (Case 1) Ifw∗i−1 ≥ 0, then by the induction assumption
we have thatw∗i ≤ 0; hence by (SI-3) we obtain that

w∗i+1 =
G1

G2
|w∗i−1| +

1
G2
|w∗i | ≥ 0.

(Case 2) Ifw∗i−1 ≤ 0, then by the induction assumption we have thatw∗i ≥ 0; hence
by (SI-3) we obtain that

w∗i+1 = −
G1

G2
|w∗i−1| −

1
G2
|w∗i | ≤ 0.

This proves thatsign(w∗i ) = −sign(w∗i+1) for all i ∈ {1, ..., n− 1}.
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1.2 Derivation of the expressions Ψi for i ∈ {1, ..., n− 1}

Here, we seek to show that fori ∈ {1, ..., n− 1} we have that

Ψi =

K i+1E(i+1)T

(W
∗

i+1+K i+1)2

ki+1
ki+1

1+ Ki EiT

(W
∗

i +K i )2

[
1+ ki

ki

(
1+ Ki

W
∗

i−1

(
1+

(
1+ W

∗

i

Ki

)
W
∗

i

W
∗

i−1
Ψi−1

))] (SI-4)

and
Ψ0 = 0.

We have thatΨ0 = 0 becausew∗0 = 0. We show identity (SI-4) by induction on
the cascade stage numberi.

Base case:From equation (SI-2), we have thatw∗1 = −T1W
∗

0
k2Ẽ2

k2
w∗2 from which

we obtain that|w∗1| = T1W
∗

0
k2Ẽ2

k2
|w∗2|. Employing equation (11) withi = 1 and

simplifying yields

|w∗1| =
k2Ẽ2

k2

1+ Ẽ1

(
1+ k1

k1

(
1+ K1

W
∗

0

)) |w∗2|.

ThusΨ1 =

k2Ẽ2
k2

1+Ẽ1

(
1+

k1
k1

(
1+

K1
W∗0

)) and the base case is proven.

Induction step: Defineψi :=

Ki+1E(i+1)T
(W∗i+1+Ki+1)2

ki+1
ki+1

1+
Ki EiT

(W
∗
i +Ki )

2

[
1+

ki
ki

(
1+

Ki
W
∗
i−1

(
1+

(
1+

W∗i
Ki

)
W∗i

W
∗
i−1

ψi−1

))] and as-

sume|w∗i−1| = ψi−1|w∗i |. We prove that|w∗i | = ψi |w∗i+1|.
Since we have thatsign(w∗i ) = −sign(w∗i−1) andψi−1 > 0, we can rewrite the

induction assumption asw∗i−1 = −ψi−1w∗i . Employing equation (SI-1) along with
the induction assumption, we obtain that

w∗i = −TiWiψi−1w∗i − TiW
∗

i−1
ki+1Ẽi+1

ki+1
w∗i+1 .

Solving this equation forw∗i , we obtain that

w∗i = −
TiW

∗

i−1
ki+1Ẽi+1

ki+1

1+ TiWiψi−1

w∗i+1 = −

ki+1Ẽi+1
ki+1

1
TiW

∗

i−1
+

Wi

W
∗

i−1
ψi−1

w∗i+1,



Cascades Attenuate Retroactivity 3

from which , employing the expression ofTi given in equation (11) and the expres-
sion ofWi from equation (5), we obtain that

w∗i = −
ki+1Ẽi+1

ki+1

1+ Ẽi

[
1+ ki

ki

(
1+ Ki

W
∗

i−1

(
1+

(
1+ W

∗

i

K i

)
W
∗

i

W
∗

i−1
ψi−1

))]w∗i+1

Since
ki+1Ẽi+1

ki+1

1+ Ẽi

[
1+ ki

ki

(
1+ Ki

W
∗

i−1

(
1+

(
1+ W

∗

i

K i

)
W
∗

i

W
∗

i−1
ψi−1

))] = ψi ,

it follows that |w∗i | = ψi |w∗i+1| and hence thatΨi = ψi for all i ∈ {1, ..., n− 1}.

1.3 Derivation of the upper and lower bounds onΨi for i ∈ {1, ..., n−1}

The next result shows an upper bound for the equilibrium valuesW
∗

i .

Lemma 1. Define

Bi ,



k
δ

i = 0

min

WiT ,
K i(

ki
ki
+1

)
EiT
WiT
−1

 i ∈ {1, ..., n} and
(

ki
ki
+ 1

)
EiT
WiT
− 1 ≥ 0

WiT i ∈ {1, ..., n} and
(

ki
ki
+ 1

)
EiT
WiT
− 1 < 0.

(SI-5)
ThenW

∗

i ≤ Bi, i ∈ {0, ..., n}.

Proof. The value ofW
∗

0 is given by equation (4), so that the first case follows
immediately. The third case follows trivially from the conservation equation (1).

To prove the second case, consider thatXi + Yi ≤ WiT , which along with
equations (7) and (6) lead to

ki

ki

EiT

1+ K i

W
∗

i

+
EiT

1+ Ki

W
∗

i

≤WiT .

Since we also have that
(

ki
ki
+ 1

)
EiT
WiT
− 1 ≥ 0, we obtain that

W
∗

i ≤
K i(

ki
ki
+ 1

)
EiT
WiT
− 1

. (SI-6)

Since alsoW
∗

i ≤WiT , the second case is shown. �
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The next result shows an upper bound and a lower bound for the values ofẼi .

Lemma 2. The value of̃Ei satisfies

EiT
(
K i + Bi

) (
1+ Bi

Ki

) ≤ Ẽi ≤
EiT

K i

.

with Bi as defined in Lemma 1.

Proof. Employing equation (6), we obtain that

Yi =
1

1+ K i

W
∗

i

EiT .

Therefore,

Ei = EiT − Yi = EiT −
1

1+ Ki

W
∗

i

EiT =
1

1+ W
∗

i

Ki

EiT .

Substituting the above into equation (10) results in

Ẽi =


1

W
∗

i + K i




1

1+ W
∗

i

Ki


EiT .

This is a monotonically decreasing function ofW
∗

i . Since 0≤ W
∗

i ≤ Bi by Lemma
1, the result follows. �

We can thus obtain an upper bound on the gainΨi at every stagei, which is not
recursive nor depends on the equilibrium value. Specifically, Employing Lemma 2
and Lemma 1 we obtain that

Ψi ≤

ki+1
ki+1

E(i+1)T

K̄i+1

1+ EiT(
K i+Bi

)(
1+

Bi
Ki

)
(
1+ ki

ki

(
1+ Ki

W
∗

i−1

)) ≤
ki+1
ki+1

E(i+1)T

K̄i+1

1+ EiT(
K i+Bi

)(
1+

Bi
Ki

)
(
1+ ki

ki

(
1+ Ki

Bi−1

)) .

(SI-7)

As a consequence, having
ki+1
ki+1

E(i+1)T
K̄i+1

1+
EiT

(Ki+Bi)
(
1+

Bi
Ki

)
(
1+

ki
ki

(
1+

Ki
Bi−1

)) < 1 is a sufficient condition for

attenuation at stagei, which is not iterative and does not depend on the equilibrium
value.

From the expressions ofΨi and the lower bound oñEi from Lemma 2, we
can also obtain a necessary condition for attenuation at every stage as follows.
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Specifically, to have attenuation at stagei, we must have thatΨi−1 < 1, so that by
Lemma 2 we obtain that

Ψi =

ki+1Ẽi+1
ki+1

1+ Ẽi

[
1+ ki

ki

(
1+ Ki

W
∗

i−1

(
1+

(
1+ W

∗

i

Ki

)
W
∗

i

W
∗

i−1
Ψi−1

))]

>

ki+1Ẽi+1
ki+1

1+ Ẽi

[
1+ ki

ki

(
1+ Ki

W
∗

i−1

(
1+

(
1+ W

∗

i

Ki

)
W
∗

i

W
∗

i−1

))] .

SinceΨi < 1, we have that necessarily the right-hand side must be smaller than
1. If the necessary condition is violated at stagei, then either stagei − 1 or stagei
amplify a perturbation as it propagates from downstream to upstream.

1.4 Proof that sign(zi) = −sign(zi+1) and derivation of Φi for all i ∈
{1, ..., n− 1}

To simplify notation, define for alli ∈ {1, ..., n}

Fi := Ẽi
ki

ki

Ki

W
∗

i−1

1+
1+

W
∗

i

K i


W
∗

i

W
∗

i−1

Ψi−1

 , (SI-8)

so thatΨi can be re-written as

Ψi =

ki+1Ẽi+1
ki+1

1+ Ẽi + Ẽi
ki
ki
+ Fi

. (SI-9)

Here, we seek to demonstrate thatsign(zi ) = −sign(zi+1) for all i ∈ {1, ..., n−1}
and that

Φi =


Ẽi

ki
ki
+ Fi

1+ Ẽi + Ẽi
ki
ki
+ Fi





ki+1
ki+1

Ẽi+1

Ẽi+1
ki+1
ki+1
+ Fi+1

 ,

whereFi is given by Equation (SI-8).

We writezi in terms ofw∗i+1. From equations (8), we have thatxi =
ki
ki

Ẽiw∗i , so
that

zi = w∗i + yi + xi+1 = w∗i (1+ Ẽi) +
ki+1

ki+1
Ẽi+1w∗i+1,

for all i ∈ {1, ..., n− 1}. Since,w∗i = −Ψiw∗i+1, we have that

zi = −Ψiw
∗
i+1(1+ Ẽi) +

ki+1

ki+1
Ẽi+1w∗i+1 =

−Ψi(1+ Ẽi) +
ki+1

ki+1
Ẽi+1

 w∗i+1.
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Substituting the expression ofΨi from equation (SI-9) and rearranging the terms,
we obtain that

zi =


ki+1

ki+1
Ẽi+1




Ẽi

ki
ki
+ Fi

1+ Ẽi + Ẽi
ki
ki
+ Fi

w∗i+1. (SI-10)

Sinceki+1
ki+1

Ẽi+1 ≥ 0 and


Ẽi

ki
ki
+Fi

1+Ẽi+Ẽi
ki
ki
+Fi

 ≥ 0, it follows thatsign(zi ) = sign(w∗i+1) and

therefore also thatsign(zi+1) = sign(w∗i+2). Sincesign(w∗i+1) = −sign(w∗i+2), we
also havesign(zi ) = −sign(zi+1) for all i ∈ {1, ..., n− 2}.

To prove thatsign(zn−1) = −sign(zn), we write xn+1 as a function ofw∗n. Em-
ploying equation (SI-1) and the fact thatw∗n−1 = −Ψn−1w∗n, we obtain that

w∗n = −TnWnΨn−1w∗n − TnW
∗

n−1xn+1.

Solving forw∗n and simplifying finally yields to

w∗n = −
1

1+ Ẽn + Ẽn
kn
kn
+ Fn

xn+1,

so thatxn+1 = −(1+ Ẽn+ Ẽn
kn
kn
+Fn)w∗n. This equation, in turn, leads to (considering

thatzn = w∗n + yn + xn+1)

zn = −(Ẽn
kn

kn
+ Fn)w∗n, (SI-11)

which shows thatsign(zn) = −sign(w∗n). Since, from the first part of the proof,
sign(zn−1) = sign(w∗n), we have thatsign(zn−1) = −sign(zn). Therefore,sign(zi ) =
−sign(zi+1) for all i ∈ {1, ..., n− 1}.

We next show thatΦi =


Ẽi

ki
ki
+Fi

1+Ẽi+Ẽi
ki
ki
+Fi




ki+1
ki+1

Ẽi+1

Ẽi+1
ki+1
ki+1
+Fi+1

 . Employing equation (SI-
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10) in the definition ofΦi for i ∈ {1, ..., n− 2}, we obtain that

Φi =

∣∣∣∣∣
zi

zi+1

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
ki+1
ki+1

Ẽi+1

) 
Ẽi

ki
ki
+Fi

1+Ẽi+Ẽi
ki
ki
+Fi

w∗i+1

(
ki+2
ki+2

Ẽi+2

) 
Ẽi+1

ki+1
ki+1
+Fi+1

1+Ẽi+1+Ẽi+1
ki+1
ki+1
+Fi+1

w∗i+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

(
ki+1
ki+1

Ẽi+1

) 
Ẽi

ki
ki
+Fi

1+Ẽi+Ẽi
ki
ki
+Fi



(
ki+2
ki+2

Ẽi+2

) 
Ẽi+1

ki+1
ki+1
+Fi+1

1+Ẽi+1+Ẽi+1
ki+1
ki+1
+Fi+1



Ψi+1

=

(
ki+1
ki+1

Ẽi+1

) 
Ẽi

ki
ki
+Fi

1+Ẽi+Ẽi
ki
ki
+Fi



(
ki+2
ki+2

Ẽi+2

) 
Ẽi+1

ki+1
ki+1
+Fi+1

1+Ẽi+1+Ẽi+1
ki+1
ki+1
+Fi+1





ki+2Ẽi+2
ki+2

1+ Ẽi+1 + Ẽi+1
ki+1
ki+1
+ Fi+1



=


Ẽi

ki
ki
+ Fi

1+ Ẽi + Ẽi
ki
ki
+ Fi





ki+1
ki+1

Ẽi+1

Ẽi+1
ki+1
ki+1
+ Fi+1

 .

Since
Ẽi

ki
ki
+Fi

1+Ẽi+Ẽi
ki
ki
+Fi

< 1 and
ki+1
ki+1

Ẽi+1

Ẽi+1
ki+1
ki+1
+Fi+1

< 1, we have thatΦi < 1. To determine

Φn−1, we recall from equation (SI-11) that|zn| = (Ẽn
kn
kn
+ Fn)|w∗n|, so that

Φn−1 =

∣∣∣∣∣
zn−1

zn

∣∣∣∣∣ =

(
kn
kn

Ẽn

) 
Ẽn−1

kn−1
kn−1
+Fn−1

1+Ẽn−1+Ẽn−1
kn−1
kn−1
+Fn−1

 w∗n

(Ẽn
kn
kn
+ Fn)w∗n

=



kn
kn

Ẽn

Ẽn
kn
kn
+ Fn




Ẽn−1

kn−1
kn−1
+ Fn−1

1+ Ẽn−1 + Ẽn−1
kn−1
kn−1
+ Fn−1

 .

Since
kn
kn

Ẽn

Ẽn
kn
kn
+Fn

< 1 and
Ẽn−1

kn−1
kn−1
+Fn−1

1+Ẽn−1+Ẽn−1
kn−1
kn−1
+Fn−1

< 1, we also have thatΦn−1 < 1.

1.5 Proof that |w∗n| < |dT |

We find an explicit expression for|w
∗
n|

|dT |
and show that it is less than 1.
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By setting the time derivative equal to zero in the last of equations (3) and
solving forxn+1, we obtain that

xn+1 =
1

W
∗

n +
an+1
an+1

(
Dw∗n +W

∗

ndT

)
. (SI-12)

From equation (9) we have that

w∗n = Tn

(
Wnw∗n−1 −W

∗

n−1xn+1

)
. (SI-13)

Substituting equation (SI-12) into equation (SI-13) and also noting thatw∗n−1 =

−Ψn−1w∗n, we obtain that

w∗n = Tn

−WnΨn−1w∗n −W
∗

n−1
1

W
∗

n +
an+1
an+1

(
Dw∗n +W

∗

ndT

)
 .

So we have that

w∗n + Tn

WnΨn−1w∗n +W
∗

n−1
1

W
∗

n +
an+1
an+1

Dw∗n

 = Tn

−W
∗

n−1
1

W
∗

n +
an+1
an+1

W
∗

ndT

 .

To simplify notation, let

P1 ,
1

1+ Tn

(
WnΨn−1 +W

∗

n−1
1

W
∗

n+
an+1
an+1

D

) (SI-14)

P2 , TnW
∗

n−1 =
1

1+ Ẽn(1+ kn
kn

(1+ Kn

W
∗

n−1
))

(SI-15)

P3 ,
W
∗

n

W
∗

n +
an+1
an+1

. (SI-16)

Therefore, we have thatw∗n = −P1P2P3dT , i.e., |w
∗
n|

|dT |
= P1P2P3. From the expres-

sions ofPi and ofTn from equation (11) we can see thatPi < 1 for i ∈ {1, 2, 3}.
Therefore,|w

∗
n|

|dT |
< 1.

This result implies that regardless of the number of stages or the parameters of
the cascade, we always have attenuation fromdT , the disturbance downstream, to
w∗n, the active protein at the last stage.
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1.6 Proof that |zn| < |dT |

In the previous section we obtained thatw∗n = −P1P2P3dT with Pi given by equa-
tions (SI-14)-(SI-16). From equations (SI-12) we obtain that

zn = w∗n + yn + xn+1 = (1+ Ẽn)w∗n +
1

W
∗

n +
an+1
an+1

(
Dw∗n +W

∗

ndT

)

=

1+ Ẽn +
D

W
∗

n +
an+1
an+1

 w∗n +
W
∗

n

W
∗

n +
an+1
an+1

dT

=

−
1+ Ẽn +

D

W
∗

n +
an+1
an+1

 (P1P2P3) +
W
∗

n

W
∗

n +
an+1
an+1

dT

=

−
1+ Ẽn +

D

W
∗

n +
an+1
an+1

 (P1P2P3) +
W
∗

n

W
∗

n +
an+1
an+1

dT

= P3

−(1+ Ẽn +
D

W
∗

n +
an+1
an+1

)(P1P2) + 1

 dT .

Since we have already shown thatP3 < 1, in order to prove that|zn|

|dT |
< 1, it

suffices to show that

0 < (1+ Ẽn +
D

W
∗

n +
an+1
an+1

)(P1P2) < 1.

Since every term in this expression is positive, the left hand inequality follows. In
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order to show the right inequality, we expandP1 andP2 and simplify as follows:

(1+ Ẽn +
D

W
∗

n +
an+1
an+1

)(P1P2) =

(1+ Ẽn +
D

W
∗

n +
an+1
an+1

)
TnW

∗

n−1

1+ Tn

(
WnΨn−1 +W

∗

n−1
1

W
∗

n+
an+1
an+1

D

)

=

1+ Ẽn +
D

W
∗

n+
an+1
an+1

1
TnW

∗

n−1
+

Wn

W
∗

n−1
Ψn−1 +

1

W
∗

n+
an+1
an+1

D

=

1+ Ẽn +
D

W
∗

n+
an+1
an+1

1+ Ẽn(1+ kn
kn

(1+ Kn

W
∗

n−1
)) + Wn

W
∗

n−1
Ψn−1 +

1

W
∗

n+
an+1
an+1

D

=

(1+ Ẽn +
D

W
∗

n+
an+1
an+1

)

(1+ Ẽn +
D

W
∗

n+
an+1
an+1

) + Ẽn
kn
kn

(1+ Kn

W
∗

n−1
) + Wn

W
∗

n−1
Ψn−1

,

which shows that (1+ Ẽn +
D

W
∗

n+
an+1
an+1

)(P1P2) < 1 as required.

1.7 Derivation of the rate constants for a weakly activated pathway

The differential equation modeling cyclei is given by

Ẋi = aiW
∗
i−1(WiT −W∗i − Xi − Yi − Xi+1) − (ai + ki)Xi

Ẇ∗i = kiXi − biW
∗
i (EiT − Yi) + biYi − Ẋi+1

Ẏi = biW
∗
i (EiT − Yi) − (bi + ki)Yi .

The assumption of having a weakly activated pathway impliesthatW∗i ,Yi ,Xi+1 ≪

WiT . Also, sinceai , ai , bi , bi ≫ ki , ki , we can assume that the first and last equations
are at the quasi steady state, that is,Ẋi ≈ 0 andẎi ≈ 0. This leads to the reduced
model for the cycle given by

Ẇ∗i =
kiWiT W∗i−1

Ki +W∗i−1

−
kiEiT W∗i
Ki +W∗i

.
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SI Figure 1:Attenuation and sign-reversal in a three-stage cascade: Example 1. The
x-axis shows the value of the perturbationdT and the y-axis shows the steady state value of
the resulting perturbationsw∗1, w∗2, andw∗3. Simulation is performed on the full nonlinear
ODE model given by equation (2). The parameters of each stagei are taken from (30)
and are given byk1 = 240(min)−1, k2 = 6.3(min)−1, k3 = 9(min)−1, k1 = 360(min)−1,
k2 = 360(min)−1, k3 = 60(min)−1, a1 = 18(nM min)−1, a2 = 198.1(nM min)−1,
a3 = 978.3(nM min)−1, a4 = 978.3(nM min)−1, a1 = 960(min)−1, a2 = 25.2(min)−1,
a3 = 36(min)−1, a4 = 36(min)−1, b1 = 115(nM min)−1, b2 = 115(nM min)−1, b3 =

4545.5(nM min)−1, b1 = 1440(min)−1, b2 = 1440(min)−1, b3 = 240(min)−1, E3T = 3.2nM,
E2T = 224nM, E1T = 224nM, W3T = 360nM, W2T = 180nM, W1T = 200nM,
W
∗

0 = 100nM, andDT = 0nM.

Hence, ifKi ≫W∗i−1 andK i ≫W∗i , we have that the phosphorylation rate constant
is given approximately bykiWiT /Ki while the dephosphorylation rate constant is
given approximately bykiEiT /K i .

1.8 Examples of attenuation in three-stage cascades

Here, we illustrate three more examples of three-stage cascades. As explained
in the main text, the theoretical predictions hold for all parameter values if the
perturbationdT is sufficiently small. SI Figures 1, 2, and 3 provide three examples
for nominal parameter values given in (30) and (31), and for extreme values in
the interval constructed about the parameter set of (31), respectively. In all cases,
surprisingly, the relationship betweendT andw∗i is approximately linear even for
large perturbationsdT .

1.9 Convergence of probability in the numerical simulations

SI Figures 4, 5, 6, 7, and 8 show the convergence of the probabilities to their final
values.
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SI Figure 2: Attenuation and sign-reversal in a three-stage cascade: Example 2.
The x-axis shows the value of the perturbationdT and the y-axis shows the steady state
value of the resulting perturbationsw∗1, w∗2, and w∗3. Simulation is performed on the
full nonlinear ODE model given by equation (2). The parameters of each stagei are
taken from (31) and are given byki = 6(min)−1, ki = 6(min)−1, a1 = 0.06(nM min)−1,
a2 = 0.198(nM min)−1, a3 = 1.2(nM min)−1, a4 = 1.2(nM min)−1, a1 = 24(min)−1, a2 =

25.2(min)−1, a3 = 36(min)−1, a4 = 36(min)−1, b1 = 0.03(nM min)−1, b2 = 0.6(nM min)−1,
b3 = 0.3(nM min)−1, b1 = 30(min)−1, b2 = 48(min)−1, b3 = 24(min)−1, E3T = 300nM,
E2T = 200nM, E1T = 300nM, W3T = 400nM, W2T = 200nM, W1T = 300nM,
W
∗

0 = 200nM, andDT = 0nM.
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SI Figure 3:Attenuation and sign-reversal in a three-stage cascade: Example 3. The
x-axis shows the value of the perturbationdT and the y-axis shows the steady state value of
the resulting perturbationsw∗1, w∗2, andw∗3. Simulation is performed on the full nonlinear
ODE model given by equation (2). The parameters of each stagei are taken from the
extreme values of the intervals constructed about the parameters in (30). These are given
by k1 = 6.3(min)−1, k2 = 6.3(min)−1, k3 = 600(min)−1, k1 = 600(min)−1, k2 = 6.3(min)−1,
k3 = 600(min)−1, a1 = 4540(nM min)−1, a2 = 18(nM min)−1, a3 = 4540(nM min)−1, a4 =

18(nM min)−1, a1 = 25.2(min)−1, a2 = 2400(min)−1, a3 = 2400(min)−1, a4 = 25.2(min)−1,
bi = 4540(nM min)−1, b1 = 25.2(min)−1, b2 = 2400(min)−1, b3 = 25.2(min)−1, E3T =

224nM, E2T = 3.2nM, E1T = 3.2nM, W3T = 180nM, W2T = 360nM, W1T = 360nM,
W
∗

0 = 100nM, andDT = 0nM.
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SI Figure 4: Three-stage cascade. Percentage ofΨi that are less than one calculated after
every new simulation run. The plots converge to the values given in Table 2.

0 0.5 1 1.5 2

x 10
4

99

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

100.8

101

simulation number

%
Ψ̃

i
<

1

 

 
Ψ

1

Ψ
2

0 2000 4000 6000 8000 10000
99

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

100.8

101

simulation number

%
Ψ̃

i
<

1

 

 
Ψ

1

Ψ
2

0 0.5 1 1.5 2

x 10
4

96.5

97

97.5

98

98.5

99

99.5

100

simulation number

%
Ψ̃

i
<

1

 

 
Ψ

1

Ψ
2

SI Figure 5: Three-stage cascade. Percentage ofΨi that are less than one calculated after
every new simulation run for the three intervals about the nominal parameter values taken
from (30) (x = 2 in the left plot,x = 5 in the center plot, andx = 8 in the right side plot).
The plots converge to the values given in Table 3.



Cascades Attenuate Retroactivity 14

0 2000 4000 6000 8000 10000
30

40

50

60

70

80

90

100

simulation number

%
Ψ̃

i
<

1

 

 
Ψ

1

Ψ
2

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

100

simulation number

%
Ψ̃

i
<

1
 

 
Ψ

1

Ψ
2

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

100

simulation number

%
Ψ̃

i
<

1

 

 
Ψ

1

Ψ
2

SI Figure 6: Three-stage cascade. Percentage ofΨi that are less than one calculated after
every new simulation run for the three intervals about the parameter values taken from (31)
(x = 2 in the left plot,x = 5 in the center plot, andx = 8 in the right side plot). The plots
converge to the values given in Table 4.
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SI Figure 7: Ten-stage cascade. Percentage ofΨi that are less than one calculated after
every simulation. The plots converge to the values given in Table 5.
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SI Figure 8: Cascade with increasing number of stages. Percentage ofΨi that are less than
1 calculated after every simulation run. All the plots converge. This simulation data was
used to generate Figure 5.


