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A. Analysis of AFM-based indentation curves 

For each AFM-based indentation experiment, the raw data 
outputs were the cantilever deflection (dV, in volts) and z-
piezo displacement (z, in nm). To calculate forces, F (nN), 
calibration of the cantilever deflection sensitivity, ds 
(nm/V) was first performed via measurement of cantilever 
bending on a hard mica surface, and the spring constant k 
(nN/nm) was measured via thermal vibration (1). Force was 
then calculated as F = dV × ds × k. For each indentation 
curve, the z-piezo displacement z was adjusted by 
subtracting the cantilever deflection d (in nm, d = dV × ds), 
z’ = z – d. Force data F were slightly offset by subtracting a 
small value (e.g., 10-6 nN) from the measured minimum 
value to ensure positive definite values along the force 
curve.  

To calculate the indentation depth D, the contact point 
between the probe tip and cartilage disk must be 
determined. In all the experiments of this study, no 
attractive or adhesive interactions were observed between 
the tip and cartilage. Hence, we adapted a previously 
reported method (2) to determine the effective tip-sample 
contact point in the absence of adhesion. In order to remove 
the spurious portion of the curve that contains no detectable 
force signals, two positions were searched via the cubic 
spline fit on the loading curve of log F versus z’ in the 
direction of tip moving towards the sample (2). The first 
position, z1, was taken as the last data point at which the 
first derivative of the fit is negative and second derivative is 
positive (dlogF/dz’ < 0 and d2logF/dz’2 > 0). The second 
position, z2, was taken as the last data point prior to z1 
where dlogF/dz’ > 0 and d2logF/dz’2 < 0, or the first data 
point along the curve if no data point was detected via the 
former scenario. The noise level of the force data, nF, was 
taken as the 95th percentile of logF for the data between z1 
and z2. The zero force data point, z0, was determined as the 
last data point along the curve where the force signal was 
below the noise level, logF < nF. After the removal of the 
spurious data (z’ < z0), the remaining portion of the F 
versus z’ curve was converted to force (F) versus 
indentation depth (D) using D = z’ – z0.   

For indentation on microtomed cartilage disks, there 
were sometimes small long range repulsion forces between 
the cartilage and the neutral probe tip prior to tip-sample 
contact, possibly due to electrostatic repulsion from the 

negatively charged aggrecan (3) and/or the presence of 
microtomed collagen fibrils on the cartilage disk surface. 
The effective tip-cartilage disk contact point, (D0, F0), was 
determined via the Golden Section search method along the 
F versus D curve. This effective contact point was taken as 
the point corresponding to the minimal weighted root mean 
square error from two least square linear regressions: the 
linear fit in the noncontant region (LSLR of F versus D, D 
< D0) and the polynomial fit in the contact region (LSLR of 
(F – F0) versus (D – D0)m, m = 1.5 for spherical tip and m = 
2 for pyramidal tip), with errors in the noncontact region 
weighted half (2). The F versus D curve, which represents 
indentation of the cartilage disk, was thereby corrected by 
trimming the noncontact region and offsetting the 
remaining F-D data by (D0, F0). 

As negligible irreversible plastic deformation was 
observed upon repeated indentation at the same location 
(Fig. 1b), we utilized loading curves to estimate the 
effective indentation modulus Eind via the analytical models 
Eqs. (1) and (2) assuming linear, isotropic, and elastic 
material behavior. The validity of the analytical model for 
the geometry (e.g., Hertz model for spherical indentation) 
was tested by comparing the modulus calculated via Hertz 
model to that calculated via finite element modeling, and < 
1% difference was found between these two methods. In 
the tested indentation depth range, fitting different portions 
of the loading curve yielded similar Eind, suggesting that the 
cartilage behaved linearly within the tested range (4). 
Previous AFM-based nanoindentation studies of bovine 
knee cartilage utilizing the Hertz model and the loading 
portion of the curve have reported similar Eind values (5,6). 
Differences in the magnitude of the reported indentation 
moduli in other studies were possibly due to different 
cartilage species (7,8), different experimental parameters 
(e.g., applied force, indentation rate) and data analysis 
methods (e.g., the Oliver-Pharr method (9) on the 
unloading curve) (10-12), and/or different magnitudes of 
deformation (e.g., deformations up to hundreds of μm via 
an instrumented nanoindenter) (13-17).  

B. Calibration and analysis of dynamic oscillatory 
indentation data 

To correct for any systematic errors in the AFM-based 
dynamic indentation measurements, calibration was first 
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carried out on a hard mica surface at the same z-piezo 
displacement frequencies and amplitudes as for the 
cartilage disks. At each measurement frequency and 
amplitude, five cycles of the sinusoidal dynamic z-piezo 
displacement, z~ , and cantilever deflection, d

~
, data were 

randomly chosen in the steady state, which was achieved 
by 15 seconds after start of the oscillation (Fig. A1a). The 
z-piezo and deflection data were offset by their means, and 
subjected to least squares nonlinear regression,  

( )000 2sin
~~

ψπ += ftdd a ,     (A1) 

( )000 2sin~~ φπ += ftzz a ,     (A2)  

where 0
~d  , 0

~z  and t are the measured dynamic cantilever 
deflection (nm), z-piezo displacement (nm) and time (sec), 
f the frequency, while amplitudes 0

~
ad , 0

~
az , and phase 

angles ψ0, 0φ are the initial best fit values of those 
parameters (the subscript “0” denotes the fit from the 
calibration sample). These initial guesses were set at the 
maximum of 0

~d  for 0
~

ad , maximum of 0
~z  for 0

~
az , and for 

ψ0, 0φ , the arcsine value of the first deflection/z-
displacement data point normalized by the maximum. If the 
fit resulted in R2 > 0.8, the outputs of the fit 

( 0000 ˆ,ˆ,
~̂

,~̂ ψφaa dz , where “^” denotes the fit output) were 
accepted as the values for that one sample. To eliminate 
possible errors from external noise and random data 
sampling, for each amplitude and frequency, this procedure 
was repeated until 50 samples were collected. The final 
data output values were calculated as the average value 
from the 50 pairs of regression outputs.  

Given the essentially infinite stiffness of mica 
compared to that of the AFM cantilever, the amplitudes of 

0
~z  and 0

~d  were observed to be independent of frequency 
for f ≤ 100 Hz, and measurements showed that 

00
~̂~̂

aa dz = (Fig. A1a, upper panel). However, for  f  > 100 

Hz, 00
~̂~̂

aa dz <  was observed, due to the attenuation of the 
high frequency z-piezo displacement signal by the low pass 
filter implemented as part of the z-sensor (18) (Fig. A1a, 

lower panel). Hence, for f = 316 Hz, the values of 0
~̂

ad  were 
taken to be the z-piezo displacement amplitudes (Fig. A1b). 
Changes in the phase angle between 0

~z  and 0
~d  ( )00

ˆˆ φψ −   
were observed at higher frequencies that were also 
associated with the low-pass filters and displacement 
sensors (18) and, to a much lesser extent, the hydrodynamic 
drag effect (19).  Such changes in the phase angle from 
these calibration measurements were subtracted from 
experimental (cartilage) data, as described below. 

For each dynamic oscillatory curve taken on the 
cartilage disks, the same sampling procedure, as for the 
calibration data, was repeated, and least-square nonlinear 
regression was performed on z-piezo and deflection data, 
z~  and d

~
,  

( )ψπ += ftdd a 2sin
~~

,     (A3) 

( )φπ += ftzz a 2sin~~ ,     (A4)  

where t, d
~

 and z~  are the experiment outputs, and the 
initial values for ad

~
, az~ , ψ  and φ  were estimated in the 

same fashion as for the calibration data. Only fits resulting 

FIGURE A1 (a) Sampling of 5 cycles of z-piezo displacement (solid squares) and simultaneous cantilever deflection data (open triangles) during the 
dynamic oscillation of z-piezo using a spherical probe tip (R ~ 2.5 µm) on a hard mica surface in MilliQ water at 1 Hz, ~ 4 nm amplitude and 316 Hz, ~ 
3 nm amplitude. One of every 40 data points were plotted for the 1 Hz (upper panel) and every other data point were plotted for the 316 Hz (lower 
panel). (b) Estimated z-piezo displacement amplitude (solid squares) and phase angle (deflection – z-piezo displacement, open diamonds) as a function 
of input frequency f at ~ 4 nm z-piezo displacement amplitudes. All data were obtained on a mica surface in MilliQ water (n ≥ 6 different locations, 
mean, SEM was smaller than the size of data symbols). 
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in R2 > 0.9 for both cantilever deflection and z-piezo data 
were accepted. The corresponding complex numbers 
representing the amplitudes and phase of z-piezo and 
cantilever deflection were calculated after correction in 

amplitude ( 0
~̂~̂

aa dz =  for f = 316 Hz) and phase angle via 
calibration: 

 ( ) ( )[ ]0000 ˆˆˆsinˆˆˆcos
~̂~ ψφψψφψ −++−+= idad ,  (A5) 

( )φφ ˆsinˆcos~̂~ iza +=z .      (A6) 

The complex amplitudes (magnitude and phase) of 
dynamic indentation depth, D~ , and force, F~ , were 
calculated as dzD ~~~

−=  , and k×= dF ~~ , respectively. For 
each dynamic oscillation curve, the phase δ(f) between D~  
to F~ and the magnitude of complex dynamic modulus |E*| 
were calculated as the average of 100 sampling results 
using the analytical models, Eqs. (5) and (6), as shown in 
Figs. 3 – 6.  
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