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1. Introduction: 

Sections 1-4 of this supplement serve to give more complete details of the 

methods used in the simulations.  Sections 5-8 discuss theoretical details which underlie 

our choice of model, discussing in more detail its benefits and limitations.  In sections 2 

and 3 we discuss the construction of figure 1.  In section 4 we describe our simulations in 

sufficient detail that a reader could reproduce figures 2-5 in the main text.  In section 5 

we explain why we may, without significant effect, neglect the tilt of the rectilinear 

diameter in figure 1A of the main text.  In section 6 we give arguments justifying our use 

of the Ising model to describe cell plasma membranes.  In section 7, we justify our use of 

‘model B’, Kawasaki dynamics.  In section 8 we discuss how our results depend on the 

relative viscosities in the two phases. 

 

2. Calculation of Correlation Length Contours in Figure 1A: 

Following Combescot et al. [1] the correlation length as a function of 

thermodynamic parameters has a simple form in a sort of ‘polar’ coordinates[2-3].  A 

coordinate transformation takes these to the more familiar axes of reduced temperature 

and magnetization.  We change coordinates a second time by introducing a non-zero 

arbitrary tilt, allowing for a non-universal correction which arises if a change in real 

temperature in a membrane corresponds to a change in both reduced temperature and 

magnetization in the Ising model.  In the critical region this tilt is captured in a single 

parameter, continuous through the critical point, called the slope of the rectilinear 

diameter [4], which is non-universal and so may be different for different systems in the 

same universality class.  Though it has not been quantified, in GPMVs it is within 
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experimental bounds of zero as can be seen in the supplemental videos of [5]. It could 

theoretically be measured by looking at the change in the surface area of bright to dark 

regions as temperature is lowered below the critical point.  Though experiments cannot 

differentiate the true tilt from zero, we include a small tilt here of 0.1 to stress that we do 

not expect it to be exactly zero. The contours all multiply a non-universal ‘natural length 

scale’ which is taken from experiments in plasma membrane vesicles [5].  Finally, we 

note that GPMVs in [5] have a spread in their critical temperatures of around 10°C, 

which corresponds to a spread in their reduced temperatures at 37°C of about .03.  

Though it has not been quantified, we expect there is also some spread in their effective 

magnetizations.  Together, we expect that there is some variation from cell to cell both 

vertically and horizontally in the exact placement of the red dot corresponding to 

physiological conditions.  We choose an average value of Tc=22°C at critical composition 

for this figure and most of the results in the paper.  Ignoring a possible deviation in the 

magnetization is justified in section 5 below. 

 

3. Preparation of cell attached plasma membrane vesicles in figure 1B: 

Cell attached plasma membrane vesicles are prepared as described previously [5-

6].  Briefly, RBL-2H3 mast cells are plated sparsely in a MatTek well (MatTek Corp. 

Ashland, MA) overnight.  Cells are then incubated for 1h at 37°C in the presence of 

active bleb buffer (2 mM CaCl2 /10 mM Hepes/0.15 M NaCl, 25 mM HCHO, 2 mM 

DTT, pH 7.4).  Cells and attached vesicles are then labeled with DiIC12 

(Invitrogen.Eugine, OR) dissolved in methanol for 5min prior to viewing on an inverted 

microscope (DM-IRB; Leica Microsystems, Bannockburn, IL) at room temperature.  The 

image was taken using an EMCCD camera (iXon 897; Andor, Belfast U.K.). Under these 

conditions, attached blebs contain coexisting liquid-disordered (bright) and liquid-

ordered (dark) phases. 

 

4. Simulation details, acceptance criterion and equilibration procedures: 

All simulations were run on a 400x400 bi-periodic square lattice with spin 

variables living on the squares (Si=±1, white and black pixels respectively). In all cases 
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the standard Ising Hamiltonian is used, given by ∑−=
},{ ji

ji SSH with summation over the 

four nearest neighbors.  We use a conversion factor from lattice constant to real distance 

of 1nm.    Temperatures are converted to Kelvin (and by extension Celsius) by equating 

the exact critical temperature given by the Onsager solution on the square lattice, 

)21log(
2
+

=cT  with 295K so that realsim TT 00769.0= , where Treal  is in Kelvin.  In a 

Monte-Carlo ‘sweep’ 160,000 (4002) pairs of pixels are proposed (on average each pixel 

is proposed to exchange twice).  We use Metropolis spin exchanges; each pair is 

exchanged or not so as to satisfy detailed balance[7]. If the resulting configuration is 

lower in energy, the exchange is always accepted.  If the energy is raised, the exchange is 

accepted stochastically with probability )exp( H∆−β  where β is the inverse temperature 

and ΔH is the change in energy between initial and final states.  Sites occupied by pickets 

are taken to have an infinite field so that exchanges which propose to move a black pixel 

onto a picket are always rejected.  Where appropriate, ‘strongly coupled’ tracers have an 

infinite coupling to other like pixels, so that any move which ends with such a strongly 

coupled tracer touching an unlike pixel is always rejected. This effectively converts them 

into cross shaped objects (though with overlap allowed), with three times as many bonds 

to their local environment and twice as many neighbors. 

Two types of dynamics are employed (any dynamics which satisfy detailed 

balance will lead to the same equilibrium ensemble of configurations).  When rapid 

equilibration is desired we employ nonlocal moves where each of a pairs of spins are 

randomly chosen from all sites on the lattice.  To simulate real time we use Kawasaki 

dynamics where we randomly choose a spin, and then randomly choose one of its four 

nearest neighbors to exchange with.   

Equilibration is very rapid using the nonlocal dynamics, where z is near 2.  We 

always equilibrate for 100,000 sweeps using nonlocal moves starting from a distribution 

which observes the random field constraint but which is otherwise random.  100,000 

sweeps is many times longer than the decay time of the slowest decaying system used 

here (the decay time is around 1000 sweeps for the pinning density in Fig. 2-4 at 1.05Tc.  
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as can be seen by eye looking at snapshots at subsequent times, or quantitatively as the 

decay time of time-time correlations).  For simulations with strong tracers we first 

equilibrate without tracers.  We then add them randomly, run an additional 100,000 

iterations to equilibrate, and then start our dynamic simulations.   

 In figure 2 no dynamics are required as only a snapshot is given.  In figure 3, the 

time averaged spatial correlation figures are averaged from 1000 snapshots each 

separated by 1000 sweeps of the non-local dynamics.  The auto-correlation functions in 

figure 3 are produced in the standard way. We first Fourier transform the spin 

configuration.  We then square this to get the static structure factor S(k). We then 

perform an inverse Fourier transform on S(k) and radially average the result to get g(r) in 

a normalization which goes to 0 at infinity.  To convert to the normalization used here, 
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rRPRPrG  (where R is averaged over the entire lattice and where 

P+1(x) is the probability of an up spin at position x) we add one to these (since all of our 

correlation functions are plotted at m=0).  We assume that the lattice sits on an infinite 

periodic plane so that values at ∞ take the mean value of the system. 

To produce the cross-correlation curves we follow the same procedure except that 

we replace the square of the Fourier transform with the real part of the product of the 

Fourier transform of the pixel configuration and the Fourier transform of the random field 

configuration.  This leads to 
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rRPRPcytrG  where Pcyt(x) is the 

probability of finding a cytoskeletal pixel at position x. 

For time-time correlations shown in Fig 4a we take the dot product of every pixel 

in the simulation’s value (±1) at time t with itself at a later time t+Δt.  We average this 

over all pixels and all times t<tmax-Δt, with tmax=5,000,000 sweeps and add one to the 

value for consistency with our normalization (in supplemental fig S1 two different 

realizations of this procedure are shown to give the reader an idea of the expected error).  

To produce the dashed lines which correspond to the asymptotic values of the correlation 

functions in the presence of the random field we take the average value of the square of 

the mean field pixel values from the configuration calculated from the non-local 



5 

 

dynamics (which are identical and faster to equilibrate, displayed in Fig3A,C) and add 

one to this value. 

To convert from Monte-Carlo time to real time, we use a microscopic diffusion 

constant of 1μm2/s which is in the middle of the range cited for membrane bound lipids 

and proteins (though this range spans some 2 orders of magnitude)[8-10].  In a Monte-

Carlo sweep, each pixel is proposed to swap twice on average.  If all swaps were 

accepted this would lead to a mean squared displacement  <x2> = 2 d2/sweep where d is 

the lattice spacing.  With our value of d=1nm, we find that if we associate one sweep 

with .5μs we arrive at the desired D=1μm2/s in the formula for diffusion <x2>=4Dt. As 

some moves are rejected, the effective diffusion constant even at arbitrarily short times is 

actually somewhat lower than this for traced diffusing pixels and slower still for our more 

strongly coupled diffusers.   

To calculate mean squared displacements we trace 1000 particles which diffuse 

on an infinite plane whose configuration is periodic with period 400.  Whenever a 

particle moves through a boundary in the ± x direction (for example), its new position for 

the purpose of mean squared displacement calculation is changed by ±400.  This allows 

us to keep track of tracers which may diffuse off of the edge of the periodic simulation.  

We average the mean squared displacements over all traced particles. 

To produce the contour plots in fig 5 we extrapolate and smooth between the 

points where simulations are conducted by replacing each point’s value by an average 

over all simulated points weighted by )/exp( 2
0

2 dd− where d0 = .1 in temperature, pinning 

density and magnetization.   

 

5. Irrelevance of a tilted rectilinear diameter to lowest order: 

As discussed in ‘Calculation of correlation length contours’ a change in real 

temperature near a critical point changes both of the corresponding Ising variables of 

reduced temperature and magnetization.  Here we show that such a tilt introduces a 

subdominant correction to the critical properties. In particular it does not affect the 

singular behavior of the correlation length 
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 In the scaling regime, a temperature change corresponds to a change in the 

reduced temperature by an amount Δt and a change in the magnetization by an amount 

tam ∆=∆  where a is the tilt of the rectilinear diameter[4].  We here consider a model in 

the scaling regime whose correlation length is given by )/(),( / tmFtmt βννξ −=  where F 

is a universal function.  We note that F is not singular at zero, since along the 0=m  axis 

the correct scaling is given by νξ −tt ~)0,( .  We now set atm =  which corresponds to a 

membrane with critical composition taken to a temperature cTtT )1( += .  This 

gives )(),(),( 1// −−== βνβννξξ taFtattmt .  Because 18/ >=βν , the argument of F is not 

singular near t=0.  As F itself is not singular there, the scaling of the correlation length 

),( mtξ  at critical composition has singular behavior νξ −tt ~)0,( which is independent of 

the tilt of the rectilinear diameter. (In addition to the "analytic correction to scaling" 

represented by the tilting of the rectilinear diameter proportional to TTc − , there is also a 

singular correction to scaling proportional to α−− 1)( TTc . Since α=0 for the 2D Ising 

model, our argument above applies without modification; this correction too is 

subdominant.  See [3] , [11-12] and for details, and a more complete picture of subtleties 

involved.)  This means that the critical properties of an Ising system at critical 

composition but slightly away from the critical temperature are dominated by its effective 

reduced temperature, with its effective magnetization coming in only at a higher order in 

the distance from the critical point.  This calculation quantifies what can be seen in Fig 

1A of the paper; Near the critical point the contours are broad and flat showing a larger 

dependence on the vertical ‘reduced temperature’ direction than on the horizontal 

‘magnetization’ direction. 

 

6. Possible universality classes: 

 Here we give arguments to support our use of the 2-D Ising universality class to 

model the critical point seen in GPMVs [5].  We explain the theoretical motivation for 

expecting Ising criticality, discuss experimental evidence for it and argue that two other 

possible universality classes are unlikely to describe cellular membranes. 
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The Ising Universality class is expected for any system with a scalar order 

parameter, a single number which describes the system at larger length scales.  In three 

dimensions, the Ising model has been shown to quantitatively describe an enormous array 

of liquid-gas and liquid-liquid critical points [3] mostly involving small molecules, but 

also including more exotic liquid phases containing polymer blends [13].  In two 

dimensions there are fewer examples, but the critical phenomenon seen in three 

component model membranes near fluid-fluid critical points are in this class [14].    In 

each of these two and three dimensional examples the components (or densities) of the 

two low temperature phases acts as the order parameter, which is therefore a scalar.  

Plasma membrane vesicles are certainly more complicated than the simple systems 

described above at the microscopic level, but as they phase separate into two domains 

with different compositions below Tc, the composition difference between these phases 

remains a good scalar order parameter.  As such, the theoretical expectation is that they 

should also be described by 2-D Ising Universality, which is in agreement with [5].  

 We cannot exhaustively dismiss other possible universality classes at present, 

though several cases can be ruled out.  The q-state Potts universality class generalizes the 

Ising model (q=2) to the critical point of a system which separates into q distinct liquids 

below Tc [15].  For q=3 and 4 there are 2-D critical points, while for q larger, there are 

only abrupt, first order transitions.  These models are ruled out quite simply by the 

GPMV experiments.  The q-state Potts model predicts that below Tc a Potts critical 

membrane should phase separate into q domains of approximately equal area.  To our 

knowledge no more than two coexisting macroscopic liquid phases have been observed in 

any membrane system.  We note as an aside that Potts models with q>2 would be 

dramatically harder for a cell to tune towards.  The Ising critical point contains two 

parameters which must be tuned.  At fixed temperature we must tune the ratio of the two 

phases below Tc and their interaction energies.  The 3-state Potts model contains five 

parameters that need tuning [15].  We can think of these as two area ratios (A:B and B:C) 

as well as three interaction energies (A with B, B with C and A with C). 

 Another possibility is that the membrane might display tri-critical Ising behavior.  

This occurs as an Ising model is tuned (along a third dimension in parameter space) to a 
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boundary beyond which it becomes an abrupt first order transition.  This model would 

only require tuning one additional parameter making it at first pass more appealing.  

However, it predicts a value for the critical exponent of ν=5/9  [15], in contrast to ν=1 for 

the Ising model, which is not consistent with existing experimental data [5]. 

 Although we are not able to conclusively demonstrate that the universality class is 

Ising at this time, we emphasize that our results should hold even if the universality class 

turns out to be more exotic.  The qualitative features of our findings come about due to 

features which have been conclusively demonstrated in GPMV experiments [5]:  A 

correlation length which becomes large near the critical point, and dynamics which 

become slow near the critical point.  Although it is outside of the scope of this work, we 

also note that there has been significant theoretical progress towards a complete 

categorization of possible universality classes permissible in 2-D [15].  Though there are 

infinitely many, they are all indexed by a unique number between zero and one, the 

central charge (which is 0.5 for the Ising model).  It would be an interesting project to see 

which if any others might be consistent with membrane experiments.   

 

7. Dynamic universality and motivation for model B: 

The Ising universality class defines the coarse grained static correlation functions 

of our system.  However, different systems in the same universality class can display 

different dynamics even in the scaling regime.  These in turn fall into different dynamic 

scaling universality classes[16] which are determined by which quantities are conserved 

by the dynamics.  In our case, we argue that the order parameter (or composition) is 

locally conserved, while momentum is not, as the fixed cytoskeleton breaks translational 

invariance, and may exchange momentum with the membrane.  With the order parameter 

conserved and momentum not, we expect model B[16].   The Kawasaki dynamics we 

implement here are also in this class[17]. 

 Membranes are expected to have a conserved order parameter for the times 

relevant to this study.  The two low temperature phases contain different concentrations 

of various components.  For a region’s order parameter to change, components must 

physically move into it from a neighboring region.  Although components are found with 
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some probability in each low temperature phase (and are able to move between them), 

this is not qualitatively different from the Ising model where white pixels and even white 

pixel clusters are found in the low temperature black pixel phase.  At longer times we 

expect processes like trafficking of lipids to change the order parameter[18].   

We also expect that in intact cell plasma membranes momentum will not be 

conserved at relevant lengths, leading to model B (rather than model H, which arises 

when momentum is also conserved). There is an emerging theoretical picture for the 

expected dynamics of model membranes near an Ising critical point, immersed in water.  

In two dimensions the usual Stokes-Einstein relations which predict the microscopic 

diffusion constant as a function of the diffuser’s size and the viscosity of the surrounding 

fluid cannot be easily applied [19] essentially because energy is not locally dissipated.  

For large inclusions this means that even an arbitrarily small viscosity of the surrounding 

fluid enters into the microscopic diffusion rate.  It also means that this diffusion constant 

depends only logarithmically on the size of the diffuser, crossing over to a rate 

determined by the 3-D viscosity (which scales as 1/r) for large enough r [20].  For lipids 

in a bilayer membrane, the picture is somewhat simpler.  Such lipids show an enormous 

temperature dependence in their microscopic diffusion rates [10] consistent with an 

energy barrier of 20-30 KBT.  These rates are approximately two orders of magnitude 

faster than the rates predicted by the hydrodynamic diffusion constant extrapolated from 

the movement of micron sized diffusers [20] in similar liquid environments.  This 

suggests the following picture [21]:  rather than their motion being dominated by 

hydrodynamic flow, lipids sit in deep potential wells in the membrane.  Their 

microscopic diffusion rate is set by the likelihood of thermally hopping into the next 

potential well – model B, rather than model H, governs the particle diffusion rate. Thus 

membranes are similar to liquids above the glass transition, where self-diffusion 

(mediated by swapping particles) is much faster than bulk diffusion. (In a crystal, the 

latter would be zero.)  

Even though particle diffusion is dominated by model B, we must address also the 

evolution of the order parameter field. Hydrodynamic flows are more effective at 

“stirring” the order parameter field than particle exchanges. This is reflected in the 
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dynamical critical exponent z, which is 3.75 for model B and around 2 for model H in 

two dimensions [16, 22]. Roughly, correlation times at a length-scale L scale as (L/L0)z 

(critical slowing-down). Since at the lipid length scale of one nm the time scales for 

hopping and hydrodynamic rates differ by two orders of magnitude, this suggests that the 

hydrodynamic effects will become competitive with the model B dynamics at roughly 

10nm (where Dlipid(L/L0)3.75~Dhydro(L/L0
 )2), which is roughly the equilibrium correlation 

length where both power laws stop applying. In the absence of a cytoskeleton and at the 

critical temperature, the hydrodynamic diffusion will dominate in a range of lengths 

between this crossover and a crossover to a modified three-dimensional model H 

dynamics (when the low viscosity of the surrounding water becomes relevant, at around 

1000nm) [22]. The rigid cytoskeleton will act as a fixed boundary condition at a 

significantly shorter length scale in our model, suppressing hydrodynamic flows entirely 

while permeable to hopping diffusion. (The cytoskeleton should be particularly effective 

at suppressing the logarithmic correlations in the 2D hydrodynamics.) Hence our model 

B dynamics not only dominates the diffusion of small particles, it also should dominate 

the dynamics of the order parameter field except for small corrections in a range 

intermediate between the correlation length and the cytoskeleton confinement scale.  We 

finally note that coupling to a cytoplasm with many rigid objects nearby may lead to even 

more suppression of bulk flow in the membrane as discussed in [23] 

 

8. Effects of different viscosities in the two liquid environments: 

 The l0 and ld phases represented by our white and black pixels have viscosities 

which differ by a factor of around 4 though in some cases up to a factor of 10 [9-10, 24]. 

A similar range is expected in the diffusion constant difference seen between lipids in the 

two phases.  In most of the manuscript we ignore the consequences of this, but we discuss 

its implications here.  The dynamics of the order parameter are relatively unaffected by 

this as order parameter changes always take place at the interface and so have a single 

rate which is presumably somewhere in between the rates predicted by the individual 

viscosities.   
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Traced particle diffusion, however, can be affected by this viscosity difference.  

We consider the case relevant to our dynamics; a particle which mostly resides in one of 

the two phases, but which may need to cross through the other phase to diffuse long 

distances.  The microscopic diffusion constant will be an average of the diffusion 

constants in the two phases weighted by the time spent in each phase.  For us it will be 

given primarily by the diffusion constant in the phase in which it usually resides.  

To travel large distances these particles potentially needs to hop over barriers of 

the alternative phase, which leads to the confinement seen in our simulations.  We 

separate this process into an attempt rate at crossing and a success probability.  The total 

amount of time spent in the unfavorable region, as well as the success probability are 

determined by static energetic considerations; they does not depend on the relative 

viscosities.  The attempt rate, however, must depend on the ratio of the diffusion 

constants in the two liquids.  In particular, to satisfy detailed balance it must go as the 

ratio of the viscosity in the usual fluid environment to that in the barrier environment.  As 

such, particles which mostly live in the low viscosity environment make fewer attempts 

at crossing the barrier, while those which live mostly in the higher viscosity environment 

make more.  This can lead to some additional confinement for particles which live in the 

lower viscosity phase.  The extra confinement is bounded by the ratio of the two 

viscosities. 

 To demonstrate these theoretical predictions we run simulations where the 

diffusion rates in the two liquid environments are different by a factor of four, mimicking 

a factor of four change in the viscosity.  We implement this by trading like particles in the 

lower viscosity liquid with a rate four times that with which unlike particles and particles 

in the high viscosity liquid are traded.  We run simulations where either the white pixels 

or the black ones have a higher viscosity.  We then plot MSDs vs time (fig S2), for the 

cases where both liquids are equivalent, and where the given particle is either a 

component of the lower or higher viscosity liquid.  In each case the y-axis is normalized 

to 1 at t=1ms (in the equal viscosity case), and we compress the x-axis for the high 

viscosity case so that the frequency of moves per unit ‘time’ on the x-axis is the same.  

We also plot a dashed line corresponding to a lack of any confinement.  We note that in 
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our simulations this consequences of this effect are fairly small.



13 

 

 

 

 

References 

 

1. Combescot, M., M. Droz, and J.M. Kosterlitz, Two point correlation function for general 
fields and temperatures in the critical region. Physical Review B, 1975. 11(Copyright (C) 2010 
The American Physical Society): p. 4661. 

2. Schofiel.P, Parametric Representation of Equation of State near a Critical Point. Physical 
Review Letters, 1969. 22(12): p. 606-&. 

3. Sethna, J.P., Statistical mechanics : entropy, order parameters, and complexity. Oxford master 
series in statistical, computational, and theoretical physics. 2006, Oxford ; New York: 
Oxford University Press. xix, 349 p. 

4. Zollweg, J.A. and Mulholla.Gw, Law of Rectilinear Diameter. Journal of Chemical Physics, 
1972. 57(3): p. 1021-&. 

5. Veatch, S.L., et al., Critical fluctuations in plasma membrane vesicles. ACS Chem Biol, 2008. 
3(5): p. 287-93. 

6. Baumgart, T., et al., Large-scale fluid/fluid phase separation of proteins and lipids in giant 
plasma membrane vesicles. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3165-70. 

7. Newman, M.E.J. and G.T. Barkema, Monte Carlo methods in statistical physics. 1999, Oxford 
New York: Clarendon Press ; 
Oxford University Press. xiv, 475 p. 
8. Eggeling, C., et al., Direct observation of the nanoscale dynamics of membrane lipids in a 

living cell. Nature, 2009. 457(7233): p. 1159-U121. 
9. Lingwood, D., et al., Plasma membranes are poised for activation of raft phase coalescence at 

physiological temperature. Proceedings of the National Academy of Sciences of the United 
States of America, 2008. 105(29): p. 10005-10010. 

10. Filippov, A., G. Oradd, and G. Lindblom, The effect of cholesterol on the lateral diffusion of 
phospholipids in oriented bilayers. Biophysical Journal, 2003. 84(5): p. 3079-86. 

11. Goldstein, R.E. and N.W. Ashcroft, ORIGIN OF THE SINGULAR DIAMETER IN THE 
COEXISTENCE CURVE OF A METAL. Physical Review Letters, 1985. 55(20): p. 2164-2167. 

12. Wang, J., et al., Principle of isomorphism and complete scaling for binary-fluid criticality. Phys 
Rev E Stat Nonlin Soft Matter Phys, 2008. 77(3 Pt 1): p. 031127. 

13. Schwahn, D., K. Mortensen, and H. Yee-Madeira, Mean-field and Ising critical behavior of a 
polymer blend. Phys Rev Lett, 1987. 58(15): p. 1544-1546. 

14. Honerkamp-Smith, A.R., et al., Line tensions, correlation lengths, and critical exponents in 
lipid membranes near critical points. Biophysical Journal, 2008. 95(1): p. 236-46. 

15. Di Francesco, P., P. Mathieu, and D. Sénéchal, Conformal field theory. Graduate texts in 
contemporary physics. 1997, New York: Springer. xxi, 890 p. 

16. Hohenberg, P.C. and B.I. Halperin, THEORY OF DYNAMIC CRITICAL PHENOMENA. 
Reviews of Modern Physics, 1977. 49(3): p. 435-479. 

17. Yalabik, M.C. and J.D. Gunton, MONTE-CARLO RENORMALIZATION-GROUP STUDIES 
OF KINETIC ISING-MODELS. Physical Review B, 1982. 25(1): p. 534-537. 

18. Fan, J., M. Sammalkorpi, and M. Haataja, Domain formation in the plasma membrane: Roles 
of nonequilibrium lipid transport and membrane proteins. Physical Review Letters, 2008. 
100(17): p. -. 

19. Saffman, P.G. and M. Delbruck, Brownian motion in biological membranes. Proc Natl Acad 
Sci U S A, 1975. 72(8): p. 3111-3. 



14 

 

20. Cicuta, P., S.L. Keller, and S.L. Veatch, Diffusion of liquid domains in lipid bilayer 
membranes. J Phys Chem B, 2007. 111(13): p. 3328-31. 

21. Vaz, W.L.C., R.M. Clegg, and D. Hallmann, Translational Diffusion of Lipids in Liquid-
Crystalline Phase Phosphatidylcholine Multibilayers - a Comparison of Experiment with 
Theory. Biochemistry, 1985. 24(3): p. 781-786. 

22. Haataja, M., Critical dynamics in multicomponent lipid membranes. Phys Rev E Stat Nonlin 
Soft Matter Phys, 2009. 80(2 Pt 1): p. 020902. 

23. Tserkovnyak, Y. and D.R. Nelson, Conditions for extreme sensitivity of protein diffusion in 
membranes to cell environments. Proc Natl Acad Sci U S A, 2006. 103(41): p. 15002-7. 

24. Kahya, N., et al., Probing lipid mobility of raft-exhibiting model membranes by fluorescence 
correlation spectroscopy. Journal of Biological Chemistry, 2003. 278(30): p. 28109-28115. 

 
 



15 

 

 

Figure S1 To demonstrate the accuracy of our time-time correlation functions, we reproduce 

the slowest decaying curve from the fig. 4A and plot both versions on the same graph.  A slight 

deviation is visible at very late times. 
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Figure S2 The mean squared displacement of strongly coupled white (A) and black (B) 

diffusers at 1.05Tc,with the same static properties as in Fig 4 D of the main text.  In each figure the 

black line shows the mean square displacement for the case when both viscosities are equal.  In the 

other cases the diffuser is a component of the high (blue) or low (red) viscosity liquid.  The y-axis is 

normalized to 1 at a time such that the traced particle has performed on average 2000 attempted 

exchanges.  The x-axis is normalized so that in each case the displayed traced particles are proposed 

to swap approximately 2000 times (0.5 ms in the main text) so that all have an identical microscopic 

attempt rate.  As can be seen, particles that normally inhabit the low viscosity liquid see some degree 

of extra confinement, and vice versa. 


