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Figure 1. The estimated loss (as a function of the penalty parameter λ used in the LASSO regularization)

based on five independent replicates of 5-fold cross validations in the breast cancer example
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Figure 2. Empirical cumulative distribution functions of p values from the logrank test in comparing high

and low risk groups in the validation sample.
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Appendix

For the asymptotic properties of β̂LG and β̂AG, we require the same assumptions that are required in Tsiatis

(1990). Briefly, the censoring C is assumed to be independent of T conditional on Z. E(Z′Z) < ∞,A0 > 0

and the true parameter β0 is an interior point of a compact parameter space Ω. The error distribution

has a finite Fisher information and the conditional distribution of Z|δ = 1 does not concentrate on a low

dimensional hyperplane in Rp. Throughout, the dimension p is assumed to be a fixed constant.

Appendix A: Asymptotic Properties of β̂LG

Throughout, we assume that n
1
2 λn → λ0 > 0 and β0 is an inner point of to a compact parameter space Ω.

Let `(β) = E{L(β)} be the limit of L(β) and Lλn(β) = L(β) + λn

∑p
k=1 |βk|. It follows from the fact that

λn → 0 and a uniform law of large numbers for U-processes (Honore and Powell, 1994) that Lλn(β) → `(β)

almost surely, uniformly in β ∈ Ω. This, together with the uniqueness of argminβ `(β) and Corollary 1 of

(Honore and Powell, 1994), implies that β̂LG → β0 almost surely.

To derive the limiting distribution of n
1
2 (β̂LG − β0), we follow similar arguments as given in Knight and

Fu (2000) and define

Vn(u) = n−1
n∑

i=1

n∑

j=1

{∣∣∣ε?
ij − n−

1
2 u′Zij

∣∣∣
+
−

∣∣ε?
ij

∣∣
+

}
+ λn

p∑

k=1

{∣∣∣β0k + n−
1
2 uk

∣∣∣− |β0k|
}

= n
{

L(β0 + n−
1
2 u)− L(β0)

}
+ nλn

p∑

k=1

{∣∣∣β0k + n−
1
2 uk

∣∣∣− |β0k|
}

where |a|+ = aI(a > 0), ε?
i = εi ∧ (Ci − β′0Zi), ε?

ij = ε?
i − ε?

j and Zij = Zi − Zj . Then n
1
2 (β̂LG − β0) is

the minimizer of Vn(u). To derive the limiting distribution of n
1
2

{
L(β0 + n−

1
2 u)− L(β0)

}
, we note that by

a functional central limit theorem for U-processes (Nolan and Pollard, 1988), n
1
2 {Sn(b)− s(b)} converges

weakly to a zero mean Gaussian process in b, where s(b) = E{Sn(b)}. Therefore, n
1
2 Sn(β0) converges in

distribution to W ∼ N(0,B0). Furthermore, for any given finite vector u,

n
1
2

{
Sn(β0 + n−

1
2 u)− s(β0 + n−

1
2 u)

}
− n

1
2 Sn(β0) = op(1) (A.1)

and thus n
1
2 {Sn(β0 + n−

1
2 u)− n

1
2 Sn(β0)} ≈ u′A0. It follows that

n
{

L(β0 + n−
1
2 u)− L(β0)

}
= u′

{
n

1
2 Sn(β0)

}
+

1
2
u′A0u + op(1) (A.2)
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which converges in distribution to u′W + 1
2u

′A0u. This, together with

nλn

p∑

k=1

{∣∣∣β0k + n−
1
2 uk

∣∣∣− |β0k|
}
→ λ0

p∑

k=1

{ujsgn(β0k)I(β0k 6= 0) + |uj |I(β0k = 0)}

implies that Vn(u) → V (u) in distribution for any fixed u. Since Vn is convex and V has a unique minimum,

it follows from the same arguments as given in Knight and Fu (2000) by invoking the convergence properties

of random convex functions that

argmin
u

Vn(u) = n
1
2 (β̂LG − β0) → argmin

u
V (u) in distribution.

Appendix B: Asymptotic Properties of β̂AG

Under the assumption that |β̂G − β0| = Op(n−
1
2 ), λ̃n → 0 and n

1
2 λ̃n →∞ as n →∞, it is straightforward

to show that L(β)+ λ̃n

∑p
k=1 |βk|/|β̂Gk| → `(β) almost surely, uniformly in β. It then follows from the same

arguments as given for the consistency of β̂LG that β̂AG → β0 almost surely.

To establish the oracle property for β̂AG, we follow steps similar to the proofs given in Zou (2006) and

Zhang and Lu (2007). We first prove the asymptotic normality part. Let

Dn(u) = n−1
n∑

i=1

n∑

j=1

{∣∣∣ε?
ij − n−

1
2 u′(Zij)

∣∣∣
+
− ∣∣ε?

ij

∣∣
+

}
+ n

1
2 λ̃n

p∑

k=1

∣∣∣β0k + n−
1
2 uk

∣∣∣− |β0k|
|β̂Gk|

= n
{

L(β0 + n−
1
2 u)− L(β0)

}
+ n

1
2 λ̃n

p∑

k=1

∣∣∣β0k + n−
1
2 uk

∣∣∣− |β0k|
|β̂Gk|

Then n
1
2 (β̂AG − β0) is the unique minimizer of Dn(u). It follows from (A.2) that

Dn(u) = u′
{

n
1
2 Sn(β0)

}
+

1
2
u′A0u + n

1
2 λ̃n

p∑

k=1

∣∣∣β0k + n−
1
2 uk

∣∣∣− |β0k|
|β̂Gk|

+ op(1)

For the third term in the right handside of the above expression, we note that if k ∈ A, β̂−1
Gk → β−1

0k in

probability and n
1
2 (|β0k + n−

1
2 uk| − |β0k|) → uksgn(β0k). By Slutsky’s Theoremm, λ̃nn

1
2 (|β0k + n−

1
2 uk| −

|β0k|)/|β̂Gk| → 0 as n →∞. If k ∈ Ac = {k′ : β0k′ = 0}, then n
1
2 (|β0k + n−

1
2 uk| − |β0k|) = |uj |, λ̃n/|β̂Gk| =

n
1
2 λ̃n/|n 1

2 β̂Gk| → ∞. Therefore, for every u,

Dn(u) =





(
uA

)′ {
n

1
2 Sn(β0)A

}
+ 1

2

(
uA

)′A1uA + op(1) if uAc = 0

Op

(∑
k∈Ac

λ̃n|β̂Gk|−1
)

otherwise

which converges weakly to

D(u) =





(
uA

)′
WA + 1

2

(
uA

)′A1uA if uAc = 0

∞ otherwise
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It follows from the the convexity of Dn(u) and the fact that D(u) attains its unique minimum at u =

(A−1
1 WA

0

)
. Following the epi-convergence results in ?) and Knight and Fu (2000), we have

n
1
2 (β̂

A
AG − βA0 ) → N(0,A−1

1 B1A−1
1 ) and n

1
2 (β̂

Ac

AG − βAc
0 ) → 0 in distribution.

We next show P (Â = A) → 1 as n →∞. For any k ∈ A, the almost sure convergence of β̂AGk → β0k implies

that P (k ∈ Â) → 1. Thus, it suffices to show that for any kc ∈ Ac, P (kc ∈ Â) → 0. Consider the event

kc ∈ Â. The Karush-Kuhn-Tucker optimality conditions (Osborne et al, 2000; Efron et al., 2004) implies

that

n
1
2 Snkc

(β̂AG) = −λ̃n|β̂Gkc
|−1sgn(β̂AGkc

) + op(1).

By (A.1) and weak convergence of n
1
2 (β̂AG − β0), we have

n
1
2 Snkc(β̂AG) = n

1
2 Snkc(β0) + Akc·n

1
2 (β̂AG − β0) + op(1) = Op(1)

where Akc· is the kcth row of A. On the other hand, λ̃n|β̂Gkc |−1 →∞ and therefore

P (kc ∈ Â) 6 P
{

n
1
2 Snkc(β̂AG) = −λ̃n|β̂Gkc |−1sgn(β̂AGkc) + op(1)

}
→ 0.

This implies P (Â = A) → 1 as n →∞.

Appendix C: Algorithm for Computing the Exact LASSO Path

In the initialization stage, we let β[1] = 0 and compute the derivative of L(β) with respect to β at β = β[1]

as

L̇[1] = n−2
∑

n>i>j>1

{(Zj − Zi)I(Yi > Yj)δj + (Zi − Zj)I(Yj > Yi)δi}.

Then, the direction of the next move is set to be β̇
[1]

= −sgn(L̇[1]
km

)α(km), where km = argmaxk|L̇[1]
k | and

α(k) is a p-dimensional vector with the kth element being 1 and all other elements being 0. Furthermore, we

set λ[1] = (β̇
[1]

)′L̇[1]. In summary, β[1], L̇[1], β̇
[1]

and λ[1] are the initial joint, the derivative of the objective

function at the initial joint, the direction for the next move, and the penalty parameter corresponding to the

current constraint, respectively.

In the iteration stage, for the current values of {β[k], L̇[k], β̇
[k]

, λ[k]}, find the smallest step size ε such that

either one of the following two events happens:

(a) exists a pair (ik, jk) such that eik
(β[k]) 6= ejk

(β[k]) and eik
(β[k] + εβ̇

[k]
) = ejk

(β[k] + εβ̇
[k]

).



6 Biometrics, 000 0000

(b) exists lk such that β
[k]
lk
6= 0 and β

[k]
lk

+ εβ̇
[k]
lk

= 0.

We then update β[k] as β[k+1] = β[k] + εβ̇
[k]

, and let L[k+1] = {(i, j) | ei(β[k+1]) = ej(β[k+1]), i > j},

S [k+1] = {l | β[k+1]
l = 0} and S [k+1]c be the complement of S. Note that typically the total size of S and L is

p. To determine the direction of the next move, we first search for all possible candidate directions. For any

given direction ḃ, we determine the descending rate of L(β) along the direction of ḃ relative to the change

in
∑p

k=1 |βk|. The final direction for the next move is the direction among all candidate directions with the

highest relative descending rate. Specifically,

• for any (i0, j0) ∈ L, we solve the equation for β̇:

β̇l = 0, for all l ∈ S [k+1],
∑

l∈S[k+1]c

sgn(β[k+1]
l )β̇l = 1,

β̇
′
(Zi − Zj) = 0, for all (i, j) ∈ L[k+1] − {(i0, j0)}

and obtain the solution β̇
[k+1]

(i0,j0) as a candidate direction for the next move. The relative descending

rate of L(β) along the direction of β̇
[k+1]

(i0,j0) is λ
[k+1]
(i0,j0)

= (β̇
[k+1]

)′L̇[k+1]
(i0,j0)

. Here, the derivative L̇[k+1]
(i0,j0)

is

updated such that

– if event (a) happens in the foregoing update, then

L̇[k+1]
(i0,j0)

= L̇[k] + {τ i0,j0(β̇
[k+1]

(i0,j0))− ηik,jk
(β[k])}/n2,

where τ i,j(b) = (Zj − Zi)I(Z′ib < Z′jb)δj + (Zi − Zj)I(Z′ib > Z′jb)δi

and ηi,j(β) = (Zj − Zi)I{ei(β) > ej(β)}δj + (Zi − Zj)I{ei(β) < ej(β)}δi.

– if event (b) happens in the foregoing update, then L̇[k+1]
(i0,j0)

= L̇[k] + τ i0,j0(β̇
[k+1]

(i0,j0))/n2.

• for any l0 ∈ S [k+1], we obtain β̇
[k+1]

(l0) , the solution to

β̇l = 0, for all l ∈ S − {l0}, |β̇l0 |+
∑

l∈S[k+1]c

sgn(β[k+1]
l )β̇l = 1,

β̇
′
(Zi − Zj) = 0, for all (i, j) ∈ L[k+1]

as a candidate direction for the next move. The relative descending rate of L(β) along β̇
[k+1]

(l0) is λ
[k+1]
(l0)

=

(β̇
[k+1]

(l0) )′L̇[k+1]
(l0)

, where

– if event (a) happens in the foregoing update, then

L̇[k+1]
(l0)

= L̇[k] − ηik,jk
(β[k])/n2.
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– if event (b) happens in the foregoing update, then

L̇[k+1]
(l0)

= L̇[k].

The iteration stops if the relative descending rates along all the directions considered above are positive.

Otherwise, let β̇
[k+1]

denote the direction with the fastest relative descending rate among {β̂[k+1]

(i0,j0), (i0, j0) ∈

S [k+1]; β̂
[k+1]

(l0) , l0 ∈ L[k+1]}. Let L̇[k+1] and λ[k+1] be the derivative and descending rate corresponding to

the selected direction. In the aforementioned algorithm, we did not consider the degenerated case that more

than p hyperplanes from the set {Yi − Yj − β′(Zi − Zj) = 0, βi = 0 | 1 6 i < j 6 n} intersect at the same

point in the parameter space., i.e., the total sizes of Sk+1 and L[k+1] is greater than p. In practice, this can

be avoided by randomly perturbing the data by an arbitrarily small amount.
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