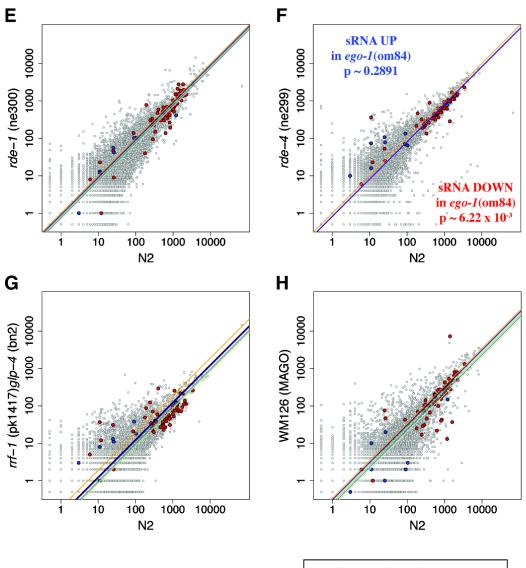
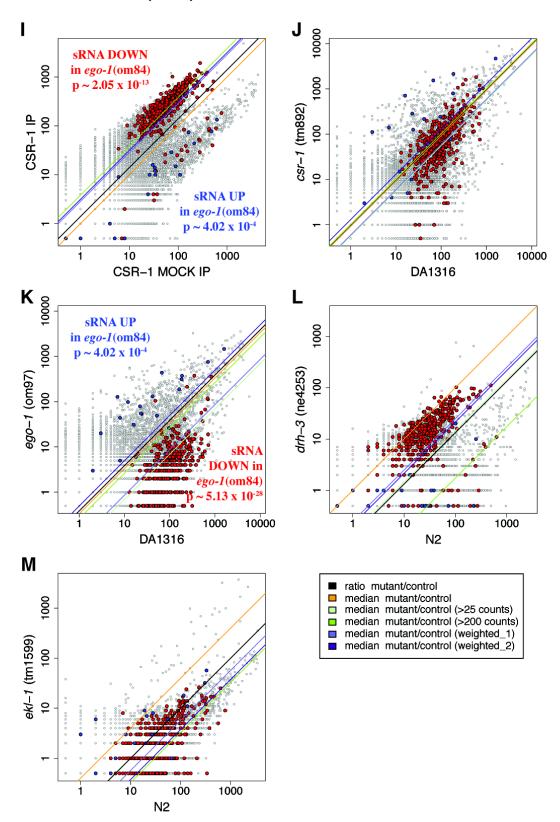
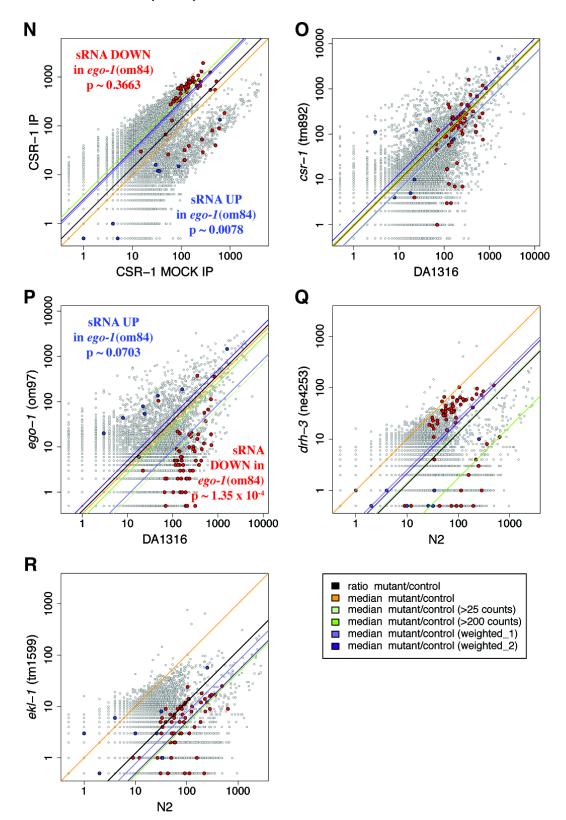
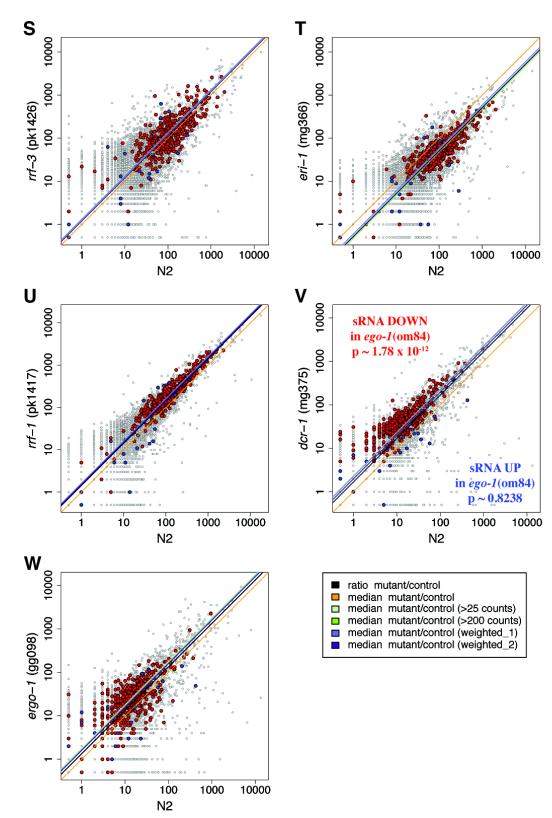

SUPPLEMENTARY MATERIAL

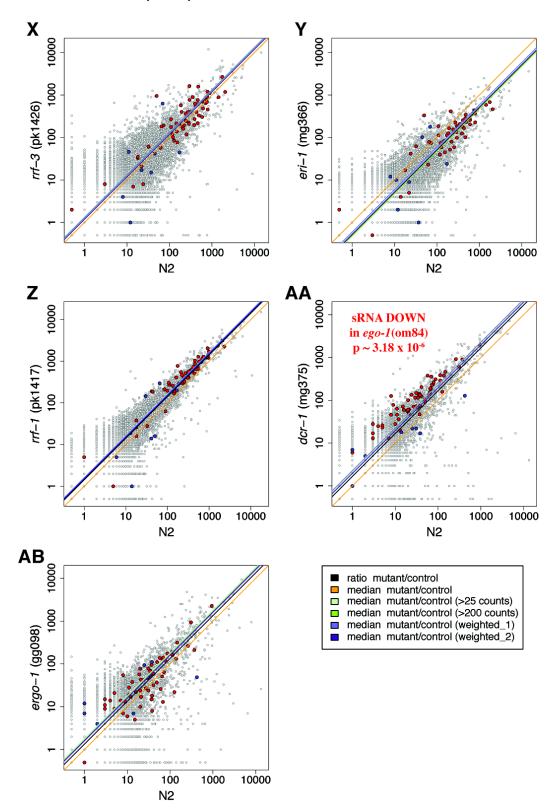

Supplementary Figure 1. Scatter plots depict a gene-by-gene comparison of small RNA abundance for equivalent stage and genotype. (A) *fem-1(hc17)*. (B) *ego-1(om84)*; *fem-1(hc17)*.

SUPP FIGURE 1

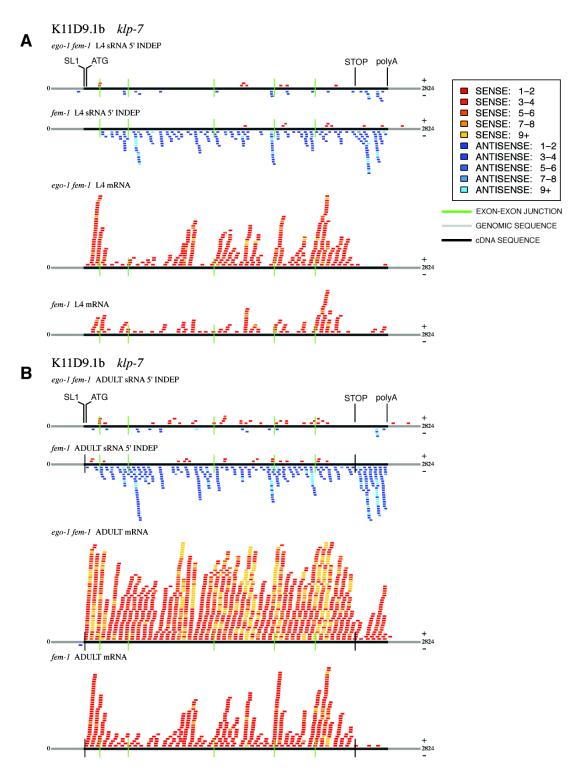

SUPP FIGURE 2

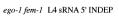


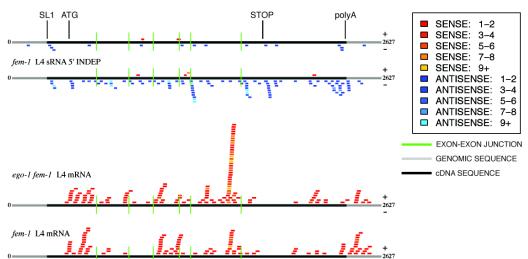

	ratio mutant/control
	median mutant/control
	median mutant/control (>25 counts)
	median mutant/control (>200 counts)
	median mutant/control (weighted_1)
	median mutant/control (weighted_2)
	· • /

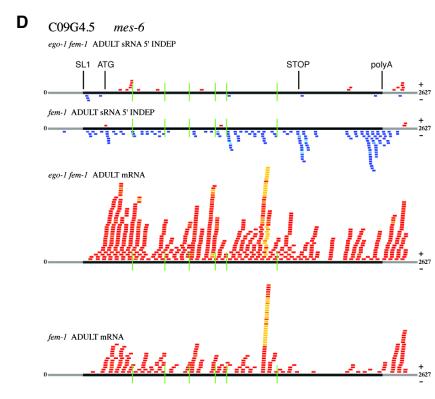


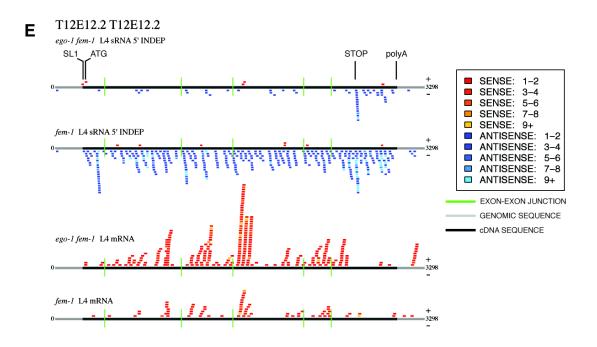
ratio mutant/control
median mutant/control
median mutant/control (>25 counts)
median mutant/control (>200 counts)
median mutant/control (weighted_1)
median mutant/control (weighted 2)



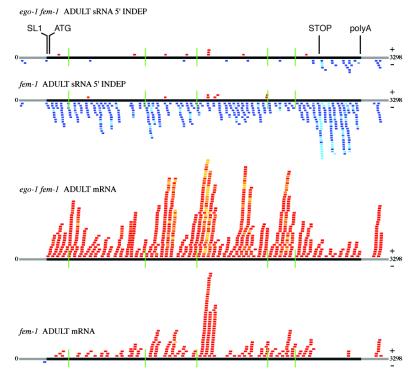

Supplementary Figure 2. Genetic requirements for EGO-1 target accumulation. Scatter plots depict a gene-by-gene comparison of small RNA abundance for several RNAi-related genes. Highlighted are genes whose 5'-independent sRNA abundance is down in L4/adult (and L3/L4/adult) ego-1(om84) (sRNA DOWN, red) and genes whose 5'-independent sRNA abundance is up in L4/adult (L3/L4/adult) ego-1(om84) (sRNA UP, blue). We determined a series of median ratios (see Methods) and used the most conservative in each case to calculate p-values based on the location of red and blue points relative to those medians. (A) L4/AD: rde-1(ne300). No significant shift. (B) L4/AD: rde-4(ne299). 240 of 437 sRNA DOWN genes fall below the lowest median ratio (p-value ~ 0.05) and 16 of 20 sRNA UP genes fall above the highest median ratio (p-value ~ 0.02). (C) L4/AD: rrf-1(pk1417) glp-4(bn2). 241 of 437 sRNA DOWN genes fall below the lowest median ratio (p-value ~ 0.04) and 17 of 20 sRNA UP genes fall above the highest median ratio (p-value ~ 2.53×10^{-3}). (D) L4/AD: WM126 (MAGO). No significant shift. (E) L3/L4/AD: rde-1(ne300). No significant shift. (F) L3/L4/AD: rde-4(ne299). 41 of 60 sRNA DOWN genes fall below the lowest median ratio (p-value ~ 6.22×10^{-3}) and 6 of 8 sRNA UP genes fall above the highest median ratio (p-value ~ 0.2891). (G) L3/L4/AD: rrf-1(pk1417) glp-4(bn2). No significant shift. (H) L3/L4/AD: WM126 (MAGO). No significant shift. (I) L4/AD: CSR-1:IP. We found that 295 of 437 sRNA DOWN genes are enriched in CSR-1 complexes (p-value ~ 2.05×10^{-13}) and 18 of 20 sRNA UP genes (p-value ~ 4.02×10^{-4}) fall below the lowest median value in CSR-1:IP sequencing data. (J) L4/AD: csr-1(tm892). No significant shift. (K) L4/AD: ego-1(om97). We found that 331 of 437 L4/adult EGO-1 targets (red) found in ego-1(om84) fall below the lowest median ratio (p-value ~ 5.13×10^{-28}) and 18 of 20 genes whose


sRNA counts increase significantly in ego-1(om84) (blue) fall above the greatest median ratio in ego-1(om97) (p-value ~ 4.02×10^{-4}). (L) L4/AD: drh-3(ne4253). No significant shift. (M) L4/AD: ekl-1(tm1599). No significant shift. (N) L3/L4/AD: CSR-1:IP. We found that 34 of 60 sRNA DOWN genes are enriched in CSR-1 complexes (p-value ~ 0.3663) and 8 of 8 sRNA UP genes (p-value ~ 0.0078) fall below the lowest median value in CSR-1:IP sequencing data. (O) L3/L4/AD: csr-1(tm892). No significant shift. (P) L3/L4/AD: ego-1(om97). We found that 45 of 60 L3/L4/adult EGO-1 targets (red) found in *ego-1(om84)* fall below the lowest median ratio (p-value ~ 1.35×10^{-4}) and 7 of 8 genes whose sRNA counts increase significantly in ego-1(om84) (blue) fall above the greatest median ratio in ego-1(om97) (p-value ~ 0.0703). (Q) L3/L4/AD: drh-3(ne4253). No significant shift. (R) L3/L4/AD: ekl-1(tm1599). No significant shift. (S) L4/AD: rrf-3(pk1426). No significant shift. (T) L4/AD: eri-1(mg366). No significant shift. (U) L4/AD: rrf-1(pk1417). No significant shift. (V) L4/AD: dcr-1(mg375). 292 of 437 sRNA DOWN genes fall above the highest median ratio (p-value ~ 1.79×10^{-12}). (W) L4/AD: ergo-1(gg098). No significant shift. (X) L3/L4/AD: rrf-3(pk1426). No significant shift. (Y) L3/L4/AD: eri-1(mg366). No significant shift. (Z) L3/L4/AD: rrf-1(pk1417). No significant shift. (AA) L3/L4/AD: dcr-1(mg375). 48 of 60 sRNA DOWN genes fall above the highest median ratio (p-value ~ 3.18×10^{-6}). (AB) L3/L4/AD: ergo-1(gg098). No significant shift.


SUPP FIGURE 3



C C09G4.5 mes-6



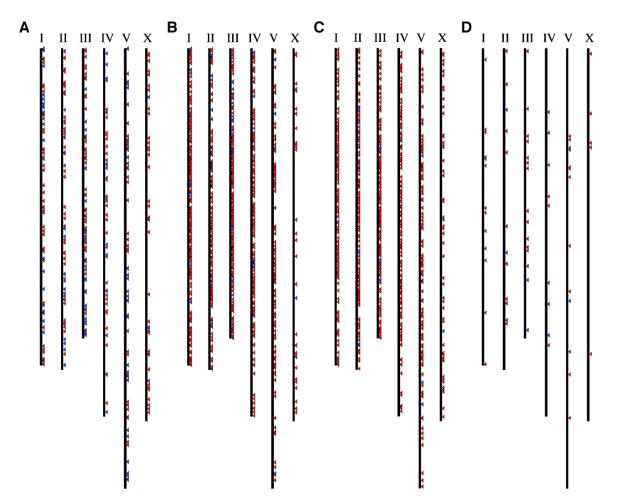
F T12E12.2 T12E12.2

Supplementary Figure 3. Small RNA and mRNA sequencing reads of *klp-7*, *mes-6*,

T12E12.2. Sense (shades of red) and antisense (shades of blue) reads of 5'-independent

small RNAs and mRNA [experimental: ego-1(om84) fem-1(hc17) and control: fem-

1(hc17)] mapped to spliced transcripts. (A) klp-7 - L4-staged animals. (B) klp-7 -

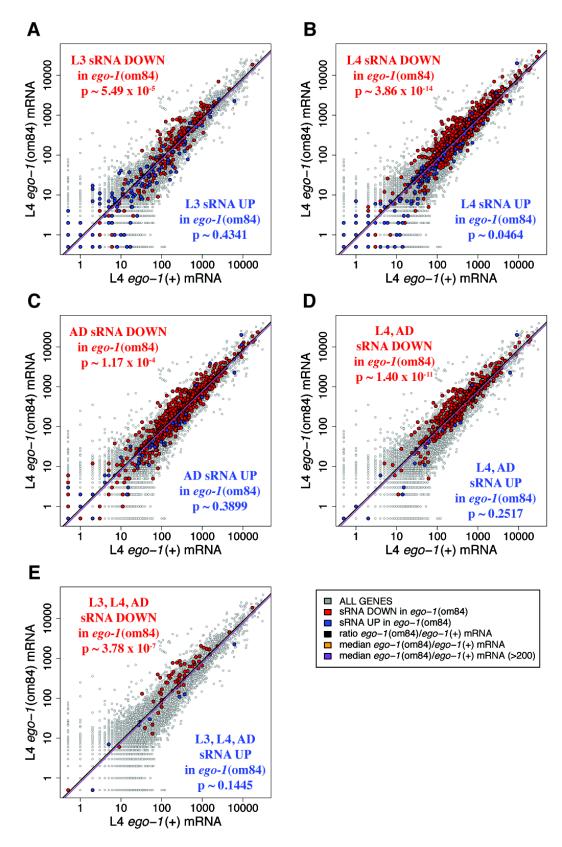

Adult-staged animals. (C) mes-6 - L4-staged animals. (D) mes-6 - Adult-staged animals.

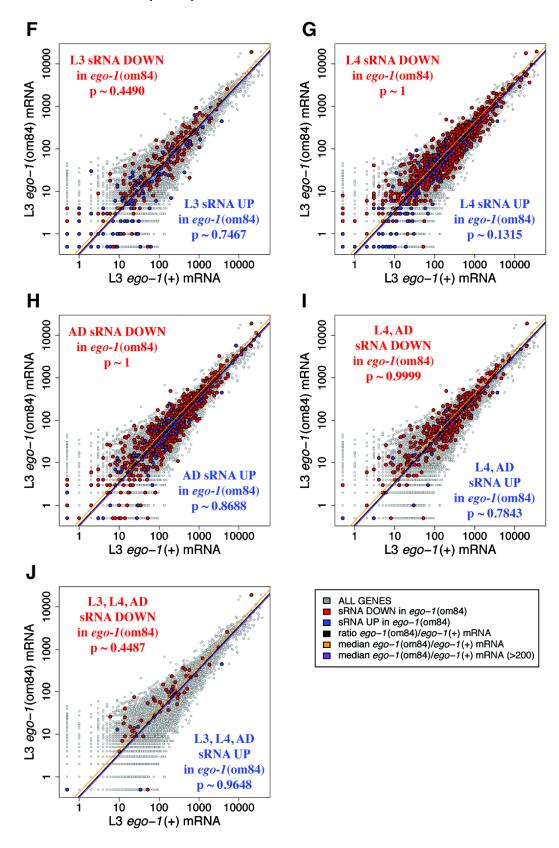
(E) T12E12.3 - L4-staged animals. (F) T12E12.2 - Adult-staged animals.

SUPP FIGURE 4

¥45F10A.2	mRNA genomic sRNA	TCTGTGAATAAAGAATTTACAAACTTCCAG <mark>AAAAAA</mark> TCTGTG <u>AATAAA</u> GAATTTACAAACTTCCAGATTTAA ATTTACAAACTTCCAG <mark>AAAAAA</mark>	(1 count)
F48E8.5	mRNA	TTTTTTTGCAGAATAAAAGGTCATCGTCTAAAAAA	
	genomic	TTTTTTTGCAG <u>AATAAA</u> AGGTCATCGTCT <mark>ATTATG</mark>	
	sRNA	GAATAAAAGGTCATCGTCTAAAA	(2)
T09A5.10	mRNA	GATCGCTGAGAAATGAAGAAGTTTCTTATTAAAAAA	
	genomic	GATCGCTGAGAAATGAAGAAGTTTCTTATTTTTAT	
	SRNA	AAATGAAGAAGTTTCTTATTAAAA	(1)
K07A12.2	mRNA	TGGAGGACGAAACGGTCCTTCGAATTTTGT<u>AAAAA</u>A	
	genomic	TGGAGGACGAAACGGTCCTTCGAATTTTGTAAACAG	
	SRNA	CGGTCCTTCGAATTTTGTAAAAAA	(1)
T05G5.3	mRNA	TTTTCACACCGCGATAAATAAATTCGCTCTAAAAAA	
	genomic	TTTTCACACCGCGATA <u>AATAAA</u> TTCGCTCT <mark>ACTTTC</mark>	
	SRNA	GATAAATAAATTCGCTCTAAAA	(1)
¥4C6B.1	mRNA	TCAATTCATTTTCAATAAACATTTTTGTAT <mark>AAAAAA</mark>	
	genomic	TCAATTCATTTTC <u>AATAAA</u> CATTTTTGTAT <mark>AAGTAA</mark>	
	SRNA	TCAATAAACATTTTTGTAT <mark>AAAA</mark>	(1)
C14B9.4B	mRNA		
C14B9.4B		AGTCCCACGAAATAAAACGTACCGATGATTAAAAAA AGTCCCACGAAATAAAACGTACCGATGATTATTAAA	
	genomic sRNA		(1)
	SKNA	GAAATAAAACGTACCGATGATT <mark>AAA</mark>	(1)
ZK1055.1	mRNA	TAGGGTCAGAATAAACGGGTTTTTAAATTT <mark>AAAAAA</mark>	
	genomic	TAGGGTCAG <u>AATAAA</u> CGGGTTTTTAAATTT <mark>ATCAAC</mark>	
	sRNA	TAAACGGGTTTTTTAAATTT<u>AAAAA</u>	(1)
	sRNA	AAACGGGTTTTTAAATTTAAAAAA	(1)
T03F6.1	mRNA	TCATTTGTCCATAAAGCTTGTGATGTTTTTAAAAAA	
	genomic	TCATTTGTC <u>CATAAA</u> GCTTGTGATGTTTTT <mark>AAGTAA</mark>	
	SRNA	AAGCTTGTGATGTTTTTAAAA	(1)

Supplementary Figure 4. Small RNAs that span mRNA-polyA junctions. We found 10 independent small RNAs (antisense to 9 putative EGO-1 targets) that span the 3'UTR-polyA junction in *fem-1(hc17)* control samples. Each of these contained the 3' linker sequence downstream of the nucleotides shown, with each defined by reads with Illumina GA2 quality scores of at least 32 (on a -5 to 40 scale). No mRNA-polyA junction RNAs for putative L4/Adult EGO-1 targets were found in experimental *ego-1(om84)*; *fem-1(hc17)* animals. The polyadenlyation signal has been underlined for each gene.




SUPP FIGURE 5

Supplementary Figure 5. Chromosomal positions of EGO-1 targets. Chromosome size and gene positions are drawn to scale. (A) L3. Genes whose small RNA abundance is decreased 2-fold [red, DOWN] or increased 2-fold [blue, UP] in ego-1(om84) relative to ego-1(+) with a posterior probability ratio [PPR] < 0.005. [I] 41 genes DOWN, 30 genes UP. [II] 47 genes DOWN, 27 genes UP. [III] 50 genes DOWN, 31 genes UP. [IV] 32 genes DOWN, 20 genes UP. [V] 36 genes DOWN, 31 genes UP. [X] 37 genes DOWN, 6 genes UP. (B) L4. Genes whose small RNA abundance is decreased 3-fold [red, DOWN] or increased 3-fold [blue, UP] in ego-1(om84) relative to ego-1(+) with a [PPR] < 0.005. [I] 262 genes DOWN, 20 genes UP. [II] 190 genes DOWN, 26 genes UP. [III] 247 genes DOWN, 34 genes UP. [IV] 192 genes DOWN, 18 genes UP. [V] 142 genes DOWN, 13 genes UP. [X] 33 genes DOWN, 4 genes UP. (C) Adult. Genes whose small RNA abundance is decreased 3-fold [red, DOWN] or increased 3-fold [blue, UP] in ego-1(om84) relative to ego-1(+) with a [PPR] < 0.005. [I] 186 genes DOWN, 6 genes UP. [II] 165 genes DOWN, 13 genes UP. [III] 188 genes DOWN, 10 genes UP. [IV] 163 genes DOWN, 10 genes UP. [V] 127 genes DOWN, 8 genes UP. [X] 51 genes DOWN, 4 genes UP. (D) L3, L4, and adult. Genes whose small RNA abundance is decreased 3-fold [red, DOWN] or increased 3-fold [blue, UP] in ego-1(om84) relative to ego-1(+) with a [PPR] < 0.005 (2-fold in L3. [I] 12 genes DOWN, 1 genes UP. [II] 10 genes DOWN, 2 genes UP. [III] 14 genes DOWN, 2 genes UP. [IV] 8 genes DOWN, 1 gene UP. [V] 11 genes DOWN, 2 genes UP. [X] 5 genes DOWN, 0 genes UP. We found only 33 putative EGO-1 targets (of 1066 total targets) to be on the X chromosome in L4 datasets (p-value ~ 7.83×10^{-34}). We also found that only 51 putative EGO-1 targets (880 total) to be on the X chromosome in adult datasets (p-value ~ 5.35×10^{-15}).

Correcting for multiple hypotheses, we found that EGO-1 targets are significantly underrepresented on the X chromosome.

SUPP FIGURE 6

Supplementary Figure 6. Summary of L4 and L3 mRNA abundance. Scatter plots depict a gene-by-gene comparison of mRNA abundance in staged L4 and L3 animals (gray), and highlighted are genes whose sRNA abundance is down in ego-1(om84) (red) and genes whose sRNA abundance is up in ego-1(om 84) (blue). As the key question for these data was the existence of an inverse relationship between small RNA (sRNA) and mRNA abundance, a central aspect of the data is the median values of the ratio of mRNA levels in ego-1(om84)/mRNA levels in ego-1(+). Two median lines are shown for each dataset: (i) median of the ratio of ego-1(om84)/ego-1(+) on a gene-by-gene basis (ii) median of the ratio of ego-1(om84)/ego-1(+) on a gene-by-gene basis using only those genes for which the sum of ego-1(om 84) and ego-1(+) counts is greater than 200. A black line shows the total ratio of total counts in each pair of samples giving the expected parity between samples. Gene counts summary: (A) L4 mRNA: Changes in L3 sRNA abundance: 243 genes down 2-fold (red, p-value ~ 5.49×10^{-5}) and 145 genes up 2-fold (blue, $p \sim 0.4341$). (B) L4 mRNA: Changes in L4 sRNA abundance: 1066 genes down 3-fold (red, p-value ~ 3.86×10^{-14}) and 115 genes up 3-fold (blue, p ~ 0.0464). (C) L4 mRNA: Changes in adult sRNA abundance: 880 genes down 3-fold (red, p-value ~ 1.17×10^{-4}) and 51 genes up 3-fold (blue, p ~ 0.3899). (D) L4 mRNA: Changes in L4 and adult sRNA abundance: 437 genes down 3-fold (red, p-value ~ 1.40×10^{-11}) and 20 genes up 3-fold (blue, $p \sim 0.2517$). (E) L4 mRNA: Changes in L3, L4, and adult sRNA abundance: 60 genes down 2-fold in L3 and 3-fold in L4 and adult (red, p-value ~ 3.78×10^{-7}) and 115 genes up (blue, p ~ 0.1445). (F) L3 mRNA: Changes in L3 sRNA abundance: 243 genes down 2-fold (red, p-value ~ 0.4490) and 145 genes up 2-fold (blue, $p \sim 0.7467$). (G) L3 mRNA: Changes in L4 sRNA abundance: 1066 genes down 3-fold

(red, p-value ~ 1) and 115 genes up 3-fold (blue, p ~ 0.1315). (**H**) L3 mRNA: Changes in adult sRNA abundance: 880 genes down 3-fold (red, p-value ~ 1) and 51 genes up 3-fold (blue, p ~ 0.8688). (**I**) L3 mRNA: Changes in L4 and adult sRNA abundance: 437 genes down 3-fold (red, p-value ~ 0.9999) and 20 genes up 3-fold (blue, p ~ 0.7843). (**J**) L3 mRNA: Changes in L3, L4, and adult sRNA abundance: 60 genes down 2-fold in L3 and 3-fold in L4 and adult (red, p-value ~ 0.4487) and 115 genes up (blue, p ~ 0.9648).

SUPP TABLE 1

Attached as EXCEL file: ego-1_sRNA_L4_AD_table.xls

Supplementary Table 1. EGO-1 small RNA targets in L4 and adult worms. 437 genes were found to have at least 3-fold fewer small RNAs (posterior probability < 0.005) in L4 and adult *ego-1(om84)* worms. 20 genes were found to have at least 3-fold more small RNAs (posterior probability < 0.005) in L4 and adult *ego-1(om84)* worms.

SUPP TABLE 2

Attached as EXCEL file: ego-1_sRNA_L3_L4_AD_table.xls

Supplementary Table 2. EGO-1 small RNA targets in L3, L4, and adult worms. 60 genes were found to have at least 3-fold fewer small RNAs in L4 and adult and at least 2-fold fewer small RNAs in L3 (posterior probability < 0.005) in *ego-1(om84)* worms. 8 genes were found to have at least 3-fold more small RNAs in L4 and adult and at least 2-fold fewer more RNAs in L3 (posterior probability < 0.005) in *ego-1(om84)* worms.

SUPP TABLE 3

Attached as EXCEL file: ego-1_sRNA_L4_AD_table_less_stringent.xls Supplementary Table 3. EGO-1 small RNA targets in L4 and adult worms. Using only 2 adult sample pairs (JMM-cel-009/012 and JMM-cel-011/014) we found 965 genes to have at least 3-fold fewer small RNAs (posterior probability < 0.005) in L4 and adult ego-1(om84) worms. We found 35 genes to have at least 3-fold more small RNAs (posterior probability < 0.005) in L4 and adult ego-1(om84) worms.

EXPERIMENTAL PROCEDURES

Worm strains

N2

PD8811 ego-1(om84) unc-29(e193)/hT2[qIS48] I; +/hT2[qIS48] III

PD8813 ego-1(om84) unc-29(e193)/ccls4251 egl-31(n472) I

PD8826 ego-1(om84) unc-29(e193)/hT2[qIS48] I; +/hT2[qIS48] III ; fem-1(hc17)

IV

PD8827 unc-29(e193) I; fem-1(hc17) IV

BA17 fem-1(hc17) IV

CB193 unc-29(e193) I

EL391 ego-1(om84) unc-29(e193)/hT2[dpy-18(h662)] I; +/hT2[bli-4(e937)] III

Worm growth, synchronization and isolation

All strains used in sRNA and mRNA sequencing were synchronized by treating gravid adults with a 5.25% hypochlorite solution to kill all stages except embryos. Embryos were grown on enriched-peptone plates (20 g/L) at 25°C to L3, L4 and adult stages. *ego-1(-) unc-29(-) fem-1(-)* mutant and *unc-29(-) fem-1(-)* control animals were isolated by treating synchronized populations of PD8826 and PD8827 with a 2mM levamisole solution for 10 minutes. The animals were then placed on the non-seeded half of an enriched-peptone plate half-seeded with *E. coli* OP50. The worms were allowed to chemotax for 2-4 hours and motile *unc-29(-)* animals were harvested.

RNA capture and sequencing

<u>sRNA</u>

Small RNA (sRNA) was extracted from frozen tissue with the mirVana miRNA Isolation Kit (Ambion). Small RNA libraries were created using a protocol similar to previous miRNA [1, 2] and sRNA capture procedures. All RNA from mirVana isolation was ligated to either Linker-1 or Linker-2 (IDT) in the absence of ATP with T4 RNA ligase 1 (New England Biolabs). Ligated RNA was size selected (38-46nt DNA/RNA hybrid) on 12% PAGE and treated with Antarctic phosphatase (New England Biolabs) to remove all phosphates from the 5' end. The RNA was then treated with T4 polynucleotide kinase (T4 PNK, New England Biolabs) to phosphorylate hydroxylated 5' ends. The 5' ends of T4 PNKtreated RNA were ligated to barcoded adapters as previously described [1]. Dual-ligated RNA was reverse transcribed, PCR amplified and size selected on 4% NuSieve (Lonza) agarose. All sequencing was performed on the Illumina/GAII platform. The following oligos were used:

3' adapters (5' adenylation, 3' dideoxyC):

IDT Linker-1 – rAppCTGTAGGCACCATCAATC

IDT Linker-2 – rAppCACTCGGGCACCAAGGAC

5' adapters (i.e. AF-PP-339, 4nt barcode at 3' end):

/5AmMC6/ ACGCTCTTCCGATCTrArCrUrU

RT oligos:

AF-JX-9 (reverse complement of IDT Linker-1) -

ATTGATGGTGCCTACAC

AF-JX-73 (reverse complement of IDT Linker-2) -

TCCTTGGTGCCCGAGTG

PCR oligos:

AF_WOL_SOL_FWD -

GATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG

AF_WOL_SOL_REV (for use with IDT Linker-1) -

CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTATTGATGGTGCCTACAG

AF_WOL_SOL_REV_2 (for use with IDT Linker-2) –

CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTTCCTTGGTGCCCGAGTG

<u>mRNA</u>

mRNA sequencing libraries were prepared using a similar protocol to that of sRNA libraries. High molecular weight (HMW, >200nt) RNA was isolated from frozen tissues with the mirVana miRNA Isolation Kit (Ambion). PolyA(+) RNA was selected from HMW RNA with the MicroPoly(A) Purist Kit (Ambion). The polyA(+) mRNA was then fragmented to 100-200nt using RNA Fragmentation Reagents (Ambion). Because fragmentation creates ends (5'-OH, 3'/2'-P) incompatible with the dual-ligation system, the mRNA was treated with T4 PNK in the presence of ATP to create monophosphorylated 5' and hydroxylated 3' ends. The ATP was then removed with illustra Microspin G-25 columns (GE Healthcare) in order to perform ATP-free 3' adapter ligation. 3' and 5' linker ligations, reverse transcription, and PCR were performed as described above. Libraries were size selected on 2% agarose (Invitrogen).

Sequence processing

Sequencing reads (36nt) for all libraries were generated using the Illumina Genome Analyzer II. Custom Perl scripts were used to identify and remove the 4nt barcode from the 5' end (sRNA and mRNA) and either the linker from the 3' end (sRNA) or the four 3' most bases (mRNA). All sequences were aligned to the *C. elegans* genome and transcriptome (Wormbase release WS190) using BLAT [3] alignment software (sRNA: stepSize=4, tileSize=8; mRNA: stepSize=5, tileSize=11). Sequences were required to meet one of two criteria for inclusion in this study: 1) (a) align perfectly for their whole length (b) be unique to both the genome and transcriptome.

2) align perfectly and uniquely to the transcriptome for their whole length and not align to the genome.

SUPP METHODS TABLE 1

JMM-cel-038	JMM-cel-037	JMM-cel-036	JMM-cel-035	JMM-cel-034	JMM-cel-033	JMM-cel-032	JMM-cel-031	JMM-cel-030	JMM-cel-029	JMM-cel-028	JMM-cel-027	JMM-cel-026	JMM-cel-025	JMM-cel-024	JMM-cel-023	JMM-cel-022	JMM-cel-021	JMM-cel-020	JMM-cel-019	JMM-cel-018	JMM-cel-017	JMM-cel-016	JMM-cel-015	JMM-cel-014	JMM-cel-013	JMM-cel-012	JMM-cel-011	JMM-cel-010	JMM-cel-009	JMM-cel-008	JMM-cel-007	JMM-cel-006	JMM-cel-005	JMM-cel-004	JMM-cel-003	JMM-cel-002	JMM-cel-001	and and the
AAGA	AAGA	ACTT	ACTT	TGAA	TGAA	TATG	TATG	ATAC	ATAC	ттст	CAAT	GCAG	GCAG	GCAG	ATAC	TATG	ттст	TGAA	ATAC	ACTT	ACTT	TATG	AAGA	AAGA	TGAA	TATG	TGAA	AAGA	GTTA	ATAC	TTCT	CAAT	CAAT	GCAG	GCAG	ATAC	TTCT	
Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-1	Linker-1	Linker-2	Linker-2	Linker-1	Linker-1	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-1	Linker-2	Linker-2	Linker-1	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	Linker-2	
AF_SOL_206_AAGA	AF_SOL_203_AAGA	AF_SOL_205_ACTT	AF_SOL_202_ACTT	AF_SOL_206_TGAA	AF_SOL_203_TGAA	AF_SOL_205_TATG	AF_SOL_202_TATG	AF_SOL_204_ATAC	AF_SOL_201_ATAC	AF_SOL_132_TTCT	AF_SOL_132_CAAT	AF_SOL_204_GCAG	AF_SOL_201_GCAG	AF_SOL_132_GCAG	AF_SOL_132_ATAC	AF_SOL_271_TATG	AF_SOL_239_TTCT	AF_SOL_271_TGAA	AF_SOL_239_ATAC	AF_SOL_286_ACTT	AF_SOL_270_ACTT	AF_SOL_286_TATG	AF_SOL_270_AAGA	AF_SOL_244_AAGA	AF_SOL_241_TGAA	AF_SOL_119_TATG	AF_SOL_244_TGAA	AF_SOL_241_AAGA	AF_SOL_119_GTTA	AF_SOL_265_ATAC	AF_SOL_230_TTCT	AF_SOL_265_CAAT	AF_SOL_230_CAAT	AF_SOL_281_GCAG	AF_SOL_264_GCAG	AF_SOL_301_ATAC	AF_SOL_264_TTCT	
fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17)	fem-1(hc17)	fem-1(hc17)	ego-1(om84) fem-1(hc17)	ego-1(om84) fem-1(hc17	fem-1(hc17)	fem-1(hc17) L3	ego-1(om84) fem-1(hc17	ego-1(om84) fem-1(hc17	
AD	AD	AD		7) AD				AD	AD	AD	AD					4				5	G	י) נג	י) נ	AD	AD) AD		7) AD	4		7) L4	') L4	ធ	5	י) נג	י) נג	
sRNA	sRNA	SRNA	SRNA	sRNA	SRNA	SRNA	SRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	SRNA	
SP-DEP	SP-DEP	5P-DEP	SP-DEP	SP-DEP	5P-DEP	SP-DEP	SP-DEP	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	RNAseq	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	AP-PNK	
3670612	4232670	4134210	4947750	3092167	2452743	3049557	5786238	5487152	4599831	3429679	2771578	4984860	5263220	3091292	3613507	2687587	7654390	3482947	7812141	5478481	5931359	4776595	2754545	6308433	811775	1663607	6234606	1470658	2213814	5116231	7317807	4862322	4181720	3167729	3565186	9566905	2874989	
1953736	2245104	2247560	2554605	1613987	1279815	1587112	2950678	,	•			•	•	•	•	•	•	•	•	•		•	•	511812	649	43052	528019	717	68437	821383	1301154	950103	819830	474756	308301	479915	117851	
60959	66106	51316	58312	247329	189415	109273	190198	,		•						,			,				•	15873	108	3523	67042	2051	12868	32094	10236	17972	45882	3767	3256	1707	1325	
37528	42682	53631	59749	22883	17359	26496	45504	2498616	2040160	981989	631034	2449654	2527019	599272	765757	1857432	3713808	1318708	3494807	1612666	4134137	951766	1037801	122874	16778	18348	93600	19584	25081	75328	142532	72340	52762	63452	66338	29795	26626	
114345	127356	125872	142984	66673	51494	30888	52110	6227	5532	1749	1396	6734	7017	6595	2836	7143	15390	2718	13670	4089	13148	4473	2253	1711739	226330	547776	2131011	271232	598044	660187	1165311	408828	377799	446379	364003	82924	125126	

Supplementary Methods Table 1. Summary of *ego-1* sequencing. Strains and cloning strategy details can be found in Methods. AP-PNK: Antarctic phosphatase and T4 polynucleotide kinase-treated; 5P-DEP: 5'-monophosphate-dependent; BC: barcode. Counts for miR, 21U, SENSE and ANTISENSE (cDNA) are total sequencing reads that match perfectly to the appropriate reference data set.

GEO accession #/FIRE_name	genotype	raw reads	reads with 3' linker	linker SENSE	ANTISENSE
	CSR-1:IP	3850599	248	33358	741579
GSM454001	control animals for CSR-1:IP	4992022	3873256	25496	528234
GSM454002	csr-1(tm892)	5139346		67567	713287
GSM454003	ego-1(om97)	5064237	2603976		
GSM454004	DA1316	5903016	4586212	47962	753452
GSM455387	control animals for drh-3(ne4253) and ekl-1(tm1599)	3059030		13655	330312
GSM455388	control animals for drh-3(ne4253) and ekl-1(tm1599)	3070842		17255	430275
GSM455389	drh-3(ne4253)	5088634			46589
GSM455390	drh-3(ne4253)	5029803		42948	56058
GSM455403	ekl-1(tm1599)	5529284		70776	43025
GSM503821	N2 (for rrf-3; rrf-1; eri-1)	1863263	1647270	25554	539837
GSM503822	N2 (for dcr-1; ergo-1)	2191221	1664919	40215	237917
GSM503823	rrf-3(pk1426)	2466605	1830800	26048	648524
GSM503824	rrf-3(pk1426)	2512391	2301267		1028592
GSM503825	rrf-1(pk1417)	2928625		40592	904420
GSM503828	eri-1(mg366)	1590129		29135	484562
GSM503830	ergo-1(gg098)	3393918		93163	317863
GSM503831	dcr-1(mg375)	3883979		79126	398993
AF_SOL_287_AGCG	N2 (for rde-1; rde-4; rrf-1 glp-4; WM126)	4514797	3495900	53079	1201514
AF_SOL_287_ACTT	rde-1(ne300)	4317957	3178834	84542	1017400
AF_SOL_287_CGTC	rde-4(ne299)	4459362	3134550		965045
AF_SOL_287_CTGG	rrf-1(pk1417) glp-4(bn2)	4893019		95365	150559
AF_SOL_288_GGGT	MAGO (WM126)	4035150		42855	371165

Supplementary Methods Table 2. Summary of referenced sequencing. Referenced sequences: name, genotype, number of raw reads, reads with 3' linker. SENSE and ANTISENSE (cDNA) are total sequencing reads that match perfectly to the appropriate reference data set.

Statistics

RNA abundance differences

A Bayesian model was used to determine P-values for sRNA and mRNA abundance levels. This model uses two hypotheses for P-value calculations. The first model assumes that two samples have the same probability for yielding a positive instance for a given gene and the second model assumes that each sample has a unique probability for yielding a positive instance for a given gene. Given a gene in two samples:

Sample 1: P_1 = positive instances for given gene, T_1 = total instances (all genes) in sample

Sample 2: P_2 = positive instances for given gene, T_2 = total instances (all genes) in sample

Therefore, the estimated positive instance value for the first model is given by:

 $(P_1+P_2)/(T_1+T_2) = PC$ (combined probability)

and the probability of the observed pattern is given by:

 $PROB_{1st} = [PC^{P_1}] * [PC^{P_2}] * [(1-PC)^{(T_1-P_1)}] * [(1-PC)^{(T_2-P_2)}].$

The estimated positive instance values for the second model are given by:

Sample 1: $P_1/T_1 = PC_1$

Sample 2: $P_2/T_2 = PC_2$

and the probability of the observed pattern in the second model is given by: $PROB_{2nd} = [(PC_1^{P_1}) * (PC_2^{P_2})] * [(1-PC_1)^{T_1-P_1}) * (1-PC_2)^{T_2-P_2}].$

The final probability is given by:

 $PROB_{final} = PROB_{1st} / PROB_{2nd}$.

Binomial distributions for UP or DOWN

A median value of fold change was calculated for given stage-specific mRNA datasets. Genes whose sRNA abundance were calculated to be significantly different for a given stage were isolated in these mRNA datasets and binomial distributions were calculated for the total number of genes above and below the median value. One-tailed tests were used to determine the appropriate P-value because we had an expectation that genes whose sRNA abundance decreased in an ego-1(-) background would show an increase in the abundance of mRNA in an ego-1(-) background and vice versa.

Binomial distributions for RNAi mutants

Five median values of the ratio of mutant to control were calculated:

- 1) all genes
- 2) only genes with mutant+control counts > 25

- 3) only genes with mutant+control counts > 200
- 4) using only genes with mean incidence > 2.5×10^{-4}
- 5) using only genes with mean incidence > 2.5×10^{-5}

* Mean incidences were calculated as $C_A/C_T + M_A/M_T$

(C_A = counts for gene A in control, C_T = total counts for all genes in control, M_A = counts for gene A in mutant, M_T = total counts for all genes in mutant).

Binomial distribution for genomic location of EGO-1-dependent small RNAs

Genome was divided into 100bp bins and the small RNA counts for each bin were tabulated and a fold-change between experimental and control samples was calculated. Examining the 40 bins with the largest fold-change between experimental and control animals, we found that 34 bins spanned an annotated exon. Using those bases that fall into exons throughout the genome, we calculated an observed frequency of bins that should span an annotated exon and from their calculated a binomial distribution for our 100bp bins.

Referenced sequences

Sequences for *csr-1(tm892)* (GSM454002), *ego-1(om97)* (GSM454003), control animals (DA1316) for *csr-1(tm892)* and *ego-1(om97)* (GSM454004), CSR-1:IP (GSM454000), control animals for CSR-1:IP (GSM454001), were obtained from the Gene Expression Omnibus (GEO) [4] accession number GSE18165 [5]. Sequences for *drh-3(ne4253)* (GSM455389 and GSM455390), *ekl-1(tm1599)* (GSM455403), and control animals for *drh-3(ne4253)* and *ekl-1(tm1599)*

(GSM455387 and GSM455388) were obtained from GEO accession number GSE18215 [6]. Sequences for N2 (GSM503821, GSM503822), *rrf-3(pk1426)* (GSM503823, GSM503824), *rrf-1(pk1417)* (GSM503825), *eri-1(mg366)* (GSM503828), *dcr-1(mg375)* (GSM503831), and *ergo-1(gg098)* (GSM503830) were obtained from GEO accession number GSE19414 [7]. Sequences for *rde-1(ne300)*, *rde-4(ne299)*, *rrf-1(pk1417) glp-4(bn2)*, and MAGO (WM126) were obtained from Julia Pak (personal communication). Sequence information can be found in Supp Methods Table 2.

Accession numbers

Illumina raw sequencing reads have been deposited in the NCBI Short Read Archive, accession numbers: GSE26579 (mRNA), GSE26580 (5'monophosphate-dependent), GSE26581 (5'-monophosphate-independent). Sequence information can be found in Supp Methods Table 1.

SUPPLEMENTARY REFERENCES

1. Gent, J. I., Schvarzstein, M., Villeneuve, A. M., Gu, S. G., Jantsch, V., Fire, A. Z., and Baudrimont, A. (2009). A *Caenorhabditis elegans* RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics *183*, 1297-1314.

2. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in *Caenorhabditis elegans*. Science *294*, 858-862.

3. Kent, W. J. (2002). BLAT--the BLAST-like alignment tool. Genome Res *12*, 656-664.

4. Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res *30*, 207-210.

5. Claycomb, J. M. et al. (2009). The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell *139*, 123-134.

6. Gu, W. et al. (2009). Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the *C. elegans* germline. Mol. Cell *36*, 231-244.

7. Gent, J. I., Lamm, A. T., Pavelec, D. M., Maniar, J. M., Parameswaran, P., Tao, L., Kennedy, S., and Fire, A. Z. (2010). Distinct phases of siRNA synthesis in an endogenous RNAi pathway in *C. elegans* soma. Mol. Cell *37*, 679-689.