
Supplementary Figure 1, Illumination system used for temporal focus/PALM 

 

 

Laser 561 excites the activated form of PA-mCherry1, and laser 405 converts PA-mCherry1 to 

the activated form. Laser 800 is used for two-photon, temporal focus activation of PA-mCherry1, 

and may be used either in conventional, nonscanning mode (left beam path) or in a line-scanning 

mode (highlighted with red beam). The remaining elements, as described in the supporting text, 

are used either to produce a temporal focus, or to overlap the various lasers beams, adjust their 

diameters, and ensure their mutual propagation in a common direction. For clarity, illumination 

is shown only along the 561 nm excitation path (green beam) and the 2 photon line-scanning 

temporal focus path (red beam).  Symbol key: HWP = half wave plate; POL = polarizer; RM = 

removable mirror; GAL = galvanometric scan mirror; BE = beam expander; CBE = cylindrical 

beam expander; GR = diffraction grating; DC = dichroic beamsplitter; AOTF = acousto-optic 

tunable filter; ND = neutral density filter; FL = focusing lens; CL = collimating lens; RL = relay 

lens. Reflective mirrors are shown as filled in rectangles, and other lenses referred to in the text 

are shown as ellipsoids with focal lengths as indicated. 

 

 

 

 

 



Supplementary Figure 2, Sectioning performance of point-scanning two-photon  

illumination 

 

 

Data were collected on a commercial system (Intelligent Imaging Innovations, Vector) that we 

tested on our microscope. Integrated axial response of ~800 nm thick quantum dot film, moved 

through 80 m axial range in 100 nm steps, and calculated by integrating fluorescence over a 25  

m by 25 m area. Full width at half maximum (FWHM) is 1.3 m, comparable to line-scanning  

temporal focus shown in Fig. 1c. 

 

 

 

 



Supplementary Figure 3, Excitation and activation beam profiles 

 

Fluorescence from an 800 nm thick quantum dot film illuminated with 561 nm excitation beam 

(left), and 800 nm line-scanning temporal focus activation beam (right). The excitation profile 

shows is roughly Gaussian in both dimensions, whereas the scanned temporal focus intensity is 

approximately Gaussian in the non-mechanically scanned dimension.  

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 4, Photoactivation of PA-mCherry1 under different imaging 

modalities  

Purified PA-mCherry1 (a gift of George Patterson) was deposited nonspecifically on a glass 

coverslip, activated as indicated, and excited using 561 nm. Samples were imaged for 100 frames 

at each z position in order to sufficiently bleach activated molecules before advancing to the next 

z position. Fluorescence was integrated over a 25 m by 25 m area, and normalized by 

subtracting a baseline fluorescence reading and dividing the result by the maximum number of 

fluorescence counts. Note that the results here are similar to those reported in Figure 1c, with 

scanning temporal focus producing the most axially confined activation profile. We speculate 

that the axial broadening compared to Figure 1c is due to 561 nm alone induced activation of 

PA-mCherry1. Asymmetry in the traces is due to bleaching of the sample during the experiment, 

which we did not correct for.  



Supplementary Figure 5, Translational invariance of PSF, taken with cylindrical lens 

inserted in imaging path 

 

 (Left) Axial variation of different 100 nm gold fiducial markers (different columns) at indicated 

z position, taken on the same coverslip and field of view. (Right) An image of the coverslip at 

z=0, showing the relative positions of the fiducials. In contrast to Supplementary Figure 6, the 

PSFs of different fiducials are near-identical, supporting the conclusion that PSF variation is 

sample-dependent, not position-dependent. 

 

 

 

 

 

 



Supplementary Figure 6, Sample induced variation of emission PSF, taken with cylindrical  

lens inserted in imaging path   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images are of 100 nm gold fiducial markers at indicated z position, taken on different coverslips  

(each column represents a calibration stack taken on a different coverslip) with presumably  

different tilt and thickness. Arrows indicate features that cannot be easily accounted for with a  

theoretical PSF, such as ‘wings’ in horizontal or vertical directions or asymmetric intensity  

distribution in the center of the PSF.  

 

 

 

 

 

 

 



 

Supplementary Figure 7, PSF Comparison between different sized markers. 

 

 

 

 

 

 

 

 

 

 

On the same coverslip, and in the same field of view, we compared the PSF of a 100 nm 

diameter gold fiducial (typically used for 3D localization and drift correction) and the PSF of a 

~6nm diameter CdSe/ZnS quantum dot at indicated axial positions. PSFs show remarkable 

similarity; small differences in background are highlighted by the chosen color map.  



Supplementary Figure 8, PSF comparison between molecules and fiducial 

 

On the same coverslip and in the same field of view, we compare raw images of a 100 nm gold 

fiducial (bottom row) at known, indicated z-positions to raw images of single PA-mCherry1 

molecules at measured z-positions (top row). The brightest molecule localized at each z-position 

(+/-25 nm) is shown. Because the molecules bleach rapidly, each frame in the top row is of a 

different molecule. Images are taken from the dataset that produced Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 9, Model-independent subdiffractive localization code combined  

with inherent aberrations of imaging optics can resolve 50 nm z steps.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 100 nm gold fiducial bead was moved in 50 nm axial steps using our z piezo stage and imaged 

(100 ms integration, EM-gain 300, 20 frames per z position) without a cylindrical lens. Images of 



the bead (top) were localized (bottom) using our model-independent code. Steps are clearly 

resolved, showing that the inherent defocus and aberrations of our imaging optics provide 

sufficient axial variation for 50 nm z resolution. However, this PSF is not ideal for 3D 

localization, as at large defocus values, the PSF spreads across many pixels thus degrading the 

signal-to-noise ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 10. Image distortion with a cylindrical lens 

 

 

Top: 100 m reticule viewed through imaging system, without cylindrical lens. Bottom: 100 m 

reticule viewed through imaging system, with cylindrical lens placed in the imaging path. Note 

significant asymmetry between horizontal and vertical dimensions (112 nm/pixel in X, 147 

nm/pixel in Y), which can be corrected by a simple linear scaling factor in each direction.  



Supplementary Figure 11, Apparent thickness of a PA-mCherry1 protein layer as  

measured with our 3D PALM localization algorithm 

 

 

 

Purified PA-mCherry1 (a gift of George Patterson) was deposited on a clean glass coverslip and  

3D PALM- imaged in 1X PBS. The apparent thickness  (FWHM) of the layer was calculated  

from the histogram of unlinked localizations in a 3.7 m by 4.5 m area, as ~150 nm. No  

attempt was made to correct for coverslip tilt or surface roughness, so we expect the calculated  

thickness to overestimate the true axial resolution of our technique. 536 unlinked localizations  

with correlation strength > 0.5 were used in generating the histogram.  

 

 

 

 



Supplementary Figure 12, Lateral localization precision for four different gold beads 

 

Beads were deposited on a clean glass coverslip and 3D PALM-imaged in 1X PBS for 10000 

frames (100 ms exposures). Resulting localizations are shown as 2D histograms with 5x5 nm 

pixels, and indicated full-width, half-maximum (FWHM) of the resulting distributions in the x- 

and y-directions are shown below each histogram. These fiducial particles were imaged ~500 nm 

out-of-focus, such that their images were tall and narrow with an aspect ratio of about 2:1, 

consistent with the FWHM in the y-direction being about 2x the FWHM in the x-direction. 

Spread in repeated localizations depends on many factors, including degree of defocus and 

particle brightness; these fiducials were ~2-3x as bright as a typical PA-mCherry1 molecule. 

Directly measuring the spread in repeated localizations of a single PA-mCherry1 molecule is 

difficult due to bleaching. 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 13, Effect of variable bin size on image histograms  

 

 

  

 

 

 

 

 

 

 

 

 

 

A linear gradient in particle density from left to right is displayed in three ways. Top: A  

scatterplot accurately conveys particle positions in the low-density region on the left, but  

becomes useless as density increases to the right. Middle: A histogram with 1x1-unit bins 

accurately conveys punctate particle positions on the left and gives an impression of increasing  

density to the right, but the density gradient is difficult to perceive at higher densities. Bottom: A  

histogram with 4x4-unit bins obscures individual particle positions, but clearly conveys the  

linear density gradient. 



Supplementary Figure 14, Image smoothing 

 

 

Top row: Unfiltered image, low-frequency image Gaussian-smoothed with =10 pixels, and 

remaining high-frequency image. Removing these high-frequency components clearly degrades 

the image. Bottom row: Low-frequency image Gaussian-smoothed with =60 pixels, and 

remaining high-frequency image containing mostly noise. Removing these high-frequency 

components does not significantly degrade the image. Note that  in this context refers to the 

width of the cutoff in the frequency domain filter we used; everywhere else in the main text and 

supplementary information  refers to a spatial domain blurring.  

 

 

 

 

 

 

 



 

 

 

Supplementary Figure 15, Improvements over 2D subdiffractive localization  

 

Left: A Cos7 cell expressing PA-mCherry1 vimentin, PALM-imaged with confined activation 

and analyzed with 2D subdiffractive localization methods. Fitting with a 2D Gaussian PSF 

ignores localizations that result from probe molecules further than a few hundred nanometers 

from the focal plane, thus producing a 3D data set with clear gaps in the axial direction (bottom 

panel, xz maximum-intensity projection, 72,000 localizations). Gaps and the low number of 

localizations also degrade the xy view (top panel). Right: The same dataset, analyzed with 3D 

subdiffractive localization methods to produce a smoothly connected axial view (bottom panel, 

xz maximum-intensity projection, 2.3 million localizations). This method does not ignore out-of-

focus molecules, providing increased localization density which improves the xy view (top 

panel, xy maximum-intensity projection). Arrows highlight features in the right projection that 

are not visible with 2D localization, due to the far fewer number of localizations. 



Supplementary Figure 16, Widefield fluorescence imaging of fixed HeLa cells expressing 

PA-mCherry1 fusion vectors 

 

(A) MTS-7-PA-mCherry1; (B) PA-mCherry1-10-lamin B1; (C) vimentin-7-PA-mCherry1; (D) 

Calreticulin-5-PA-mCherry1-2-KDEL.  Scale bar represents 10 m. 

 

 

 

 

 



Supplementary Table 1, Parallels between PALM- and conventional- images 

 

 

 

 

Quantity PALM image Conventional image 

Fundamental measurement Single localization Single photoelectron 

Measurement source Single fluorescent particle Single fluorescent particle 

Theoretical measurement precision Unlimited CCD Pixel Size 

Spread in repeated measurements Photoelectron counting errors Diffraction 

Typical PSF dimension < 1/10 emission wavelength < 1 emission wavelength 

Typical measurements per PSF Few Many 



Supplementary Note 1, Parameters chosen to produce diffraction-limited temporal focus 

In principle, conventional temporal focus can provide axial sectioning equivalent to 

standard line-scanning two-photon microscopes, and line-scanning temporal focus can provide 

sectioning equivalent to standard point-scanning two-photon microscopes. This is unsurprising, 

as temporal focusing simply replaces mechanical scanning in one direction with passive 

scanning, trading power density for repetition rate. This trade has no drawback in our setup: 

standard point-scanning with more than ~10 mW average power damages our samples, but our 

femtosecond oscillator outputs nearly 4000 mW average power at 800 nm, allowing for 

reasonable power densities in temporal focusing. 

In practice, achieving diffraction-limited sectioning with a temporal focusing microscope 

requires careful design. We found the most crucial parameter to choose correctly was the 

magnification between the diffraction grating and the sample. Using a too low a magnification 

does not give diffraction-limited sectioning, and using too high a magnification overfills the back 

focal plane (BFP) of the microscope objective, wasting power. 

Equation 2 in reference1 suggests a useful guideline: use magnification such that the 

instantaneously illuminated area at the diffraction grating is de-magnified to form a diffraction 

limited spot at the sample, 

NA

Mc

2sin





  

With c the speed of light,  the pulse width,  the incidence angle onto the grating, M the 

magnification between grating and sample, the wavelength and NA the numerical aperture of 

the objective.  

In our setup, the instantaneously illuminated spot on our diffraction grating (left side of 

the equation above) is 63 m. For our 1.2NA objective with 800 nm illumination, a diffraction-

limited spot has dimensions ~ 333 nm, suggesting our optimal magnification is ~190X. 

We tested sectioning performance for a range of magnifications, and found that 

sectioning performance improved with increasing magnification up to ~500X. Further increasing 

our system's magnification above 500X did not noticeably improve sectioning, but decreased the 

amount of light delivered to the sample. One possible explanation for these observations is that 

the shape of the instantaneously illuminated spot on the grating may not match the shape of a 

diffraction-limited spot, and requires further demagnification for optimal sectioning. 



Equivalently, producing a diffraction-limited spot requires filling the BFP of the microscope 

objective uniformly, but a magnification of only ~190X leaves substantial intensity variation 

across the BFP, which can be smoothed to uniformity by additional magnification. 

Because the BFP of the microscope objective is a Fourier plane of the grating's surface, 

different colors diffracted from the grating focus at different transverse positions in the BFP. The 

spectrum of our laser pulse is roughly Gaussian in shape, but at a magnification of 500X, only 

the central portion of our spectrum passes the objective. This portion of the spectrum is fairly 

uniform in intensity, and we speculate that a laser pulse with similar bandwidth but a more 

uniform spectral intensity would require less magnification to achieve optimal sectioning. 



Supplementary Note 2, Three dimensional model-independent subdiffractive localization 

Following data acquisition, we process the data in the Python programming language2,3. 

Data processing steps are summarized as follows: 

 

1. Construct calibration stack 

2. Identify candidate particles in each data image 

3. Localize each candidate particle using calibration stack 

4. Correct for drift 

5. Optionally, link localizations, and re-localize 

6. Construct image histograms from localization data 

 

In more detail, 

1. Construct calibration stack 

Crop the calibration image stack in the xy dimensions to contain a single fiducial and to 

minimize blank space around the fiducial. Average all cropped calibration images taken at the 

same piezo position. Compare the first z series to subsequent repetitions to ensure that sample 

drift is not substantial during the calibration acquisition. Smooth the calibration stack in 3d with 

a Gaussian filter,  = 1 pixel in xy and 5 pixels in z.  

 

2. Identify candidate particles in each data image: 

Apply a Gaussian-Laplace filter with  = 4 pixels to each data image, removing slowly-

varying background and quickly-varying noise. Select candidate particles from the filtered image 

as follows: 

a.) Mark all pixels in the filtered image that are above a user-specified threshold (typically 4 

standard deviations of the filtered image above the filtered image mean). 

b.) Place a rectangle (with the same xy dimensions as the calibration stack) centered on the 

brightest marked spot in the filtered image. Record the rectangle's location, and unmark all the 

pixels inside this rectangle. 

c.) Repeat b.), placing rectangles, unmarking pixels, and recording rectangle locations until no 

pixels in the image are marked. All coordinates recorded are candidate 'bright' particles. 



d.) Construct the differential filtered image by subtracting the previous filtered image from the 

current filtered image, and repeat the candidate selection process (steps a.)-c.)) to find candidate 

'birth' particles, regions where brightness increased substantially from the previous frame. 

e.) Finally, repeat candidate selection (steps a.)-c.)) on the negative of the filtered differential 

image to find candidate 'death' particles, regions that decreased in brightness substantially from 

the previous frame. 

For each dataset, the 'bright' detection threshold and the 'birth'/'death' detection threshold 

were independently adjusted (typically from 3-5 standard deviations of the filtered image) to 

minimize obvious false positives and false negatives. False positives cause unnecessary 

computation, and false negatives cost potential localizations. 

 

3. Localize each candidate particle using calibration stack: 

For each candidate, load the xy-subregion of the raw data image recorded during 

candidate selection. For 'birth' candidates, subtract the previous frame from the current frame. 

For 'death' candidates, subtract the current frame from the previous frame. Cross-correlation is 

then used to find the subpixel x, y, z shift which will best align the candidate image with the 

calibration stack. This operation is conceptually simple: 

a.) Bandpass filter the calibration stack and the data image, to remove slowly-varying 

background and quickly-varying noise. Normalize the filtered images so that cross-correlations 

will vary between -1 (perfect anticorrelation) and 1 (perfect matching correlation). In practice, a 

correlation of less than 0.2 was rare, and correlation strengths above 0.4 typically indicated an 

acceptable match between calibration images and data. 

b.) Shift the calibration stack (with periodic boundaries) in x, y, and z by some amount (xs, yy, 

zs). Use interpolation if necessary to calculate sub-pixel shifts. 

c.) Pointwise-multiply the data image by the first xy-slice of the shifted calibration stack, and 

sum the result to produce a correlation strength. 

d.) Find the shift (xm, ym, zm) which maximizes correlation strength. 

e.) Add this shift to the xy position of the candidate selection rectangle to give a localization 

coordinate. 

f.) Record the localization coordinate and continue with steps c.)-e.) for the next candidate 

molecule. 



This process must be done with great care to ensure useful results in reasonable 

computation time. Others4 have described how to greatly accelerate a similar (but two-

dimensional) search using Fourier cross-correlation, Fourier interpolation, and matrix-

multiplication-based inverse Fourier transforms. Similar techniques are used here for speed; note 

that the detailed steps below are equivalent to the simple process (steps a.)-f.)) described above: 

a.) Construct a 2d Fourier bandpass filter W for detrending and smoothing (typically the 

pointwise product of a Gaussian high-pass filter with  = 1 pixel and a Gaussian low-pass filter 

with  = 7 pixels). b.) Discrete Fourier transform the calibration stack in the x and y directions 

using the Fast Fourier transform (FFT). Pointwise-multiply each xy slice by the bandpass filter 

W from a.). Normalize the resulting slices to have unit vector magnitude (the sum of the squares 

of the filtered image pixel values is one). Fourier transform this array in the z-direction, and store 

it, since it is used many times. 

c.) FFT the candidate image, multiply by the bandpass filter from a.), and normalize as in b.). 

Tile copies of this array in the z-direction to give an array with the same dimensions as the 

calibration stack. 

d.) Pointwise-Multiply the FFT'd, filtered, normalized calibration stack by the FFT'd, filtered, 

normalized, z-repeated data image. Mathematically, for each image I, calculate C: 

 

C = Tile(Normalize(W*FFTXY(I))) * FFTZ(Normalize(Tile(W) * FFTXY(Calibration))) 

 

where W is the bandpass filter described in a.), '*' denotes pointwise multiplication, the 

'Normalize' operation is described in b.), and the 'Tile' operation is described in c.). The inverse 

FFT of array C gives the cross-correlation of the data image with the calibration stack for 

integer-pixel x, y, and z shifts. If the array C were zero-padded appropriately, its inverse FFT 

would give the same cross-correlation for subpixel shifts, but this operation becomes very 

expensive for small shifts. 

e.) Instead, use a series of inverse Fourier transforms similar to the process described in 

reference4 to find the maximum of the cross correlation. The first transform truncates C by a 

factor of 2 to 4 before performing an inverse FFT, giving a coarse, inexpensive cross-correlation 

of 2 to 4 pixel shifts. The second transform zero-pads C by a factor of 2, but uses a matrix-

multiplication inverse discrete Fourier transform to calculate half-pixel-shift cross-correlations in 



an 11x11x41 xyz-shift region centered on the maximum of the first, coarse cross-correlations. 

The third and final transform zero-pads C by a factor of 20 before a matrix-multiplication-based 

inverse Fourier transform to calculate 1/20th-pixel-shift cross-correlations in an 11x11x41 xyz-

shift region centered on the maximum of the second, half-pixel cross-correlation. 

g.) Record the subpixel location of the maximum of our cross-correlation. Add this shift to the xy 

position of the candidate selection rectangle to give a localization coordinate. 

f.) Record the localization coordinate and repeat steps c.)-e.) of this process with the next 

candidate molecule. 

 

4. Correct for drift: 

After localization, examine a plot of x, y, z localizations and correlation strength vs. 

image number, and specify a filter based on localization and correlation strength that uniquely 

identifies a fiducial. Use piecewise linear interpolation followed by user-specified gaussian 

smoothing to estimate the sample drift versus time. 

 

5. Optionally, link localizations, and re-localize: 

A single fluorescent molecule may produce several candidate particles spread out over 

several frames, and often reasonable guesses can be made to link multiple candidates. Starting 

with each 'birth' localization, search the next three frames for a subsequent 'death' localization 

within 3 pixels in x and y, and 10 pixels in z. If no 'death' is found but a 'bright' localization is 

found which matches the 'birth', search an additional three frames for a 'death' localization. For 

each 'birth', 'death' pair linked this way, construct an image which is the average of all frames 

between the 'birth' and 'death'. Subtract the average of the frame before the birth and the frame 

after the death (background), and relocalize the result to generate a linked, background 

subtracted localization. These localizations may be further analyzed for quantities such as total 

number of photoelectrons. Linked localizations generally have a higher signal-to-noise and thus 

higher localization precision than unlinked localizations, but linking also leads to a decreased 

number of total localizations in the final PALM image. Since resolution is often more limited by 

number of localizations than by localization precision, linking is not always beneficial. 

 

6. Construct image histograms from localization data 



Construct a 3D histogram of xyz localization coordinates. Each xyz bin records the 

number of localizations in a given xyz range. The localization coordinates are corrected for 

sample drift and known z-piezo position. Proper choice of xyz bin size is critical. A very small 

bin size produces a 3D scatterplot of xyz localizations. A scatterplot is a very accurate 

representation of the measured localizations, but a crowded scatterplot can be difficult to 

interpret by eye. A larger bin size produces a density map, but too large a bin size degrades 

image resolution. More discussion is provided in Supplementary Note 3. 

 The user can also specify filters to reject localizations. Typically localizations with a low 

correlation strength (0.4 or less), and/or that were very out-of-focus (more than 1.5 microns) and 

therefore had large PSFs with poor signal to noise were rejected.  



Supplementary Note 3, Image rendering 

PALM records a set of particle positions, often with some estimate of each 

measurement's error. A 2D or 3D scatterplot with error bars communicates this information 

completely, but scatterplots become crowded and confusing with increasing measurement 

density. A variety of visualization schemes have been used for 2D and 3D PALM data, but no 

clear visualization standard is established. As a result, it is often unclear exactly what a PALM 

'image' displays. 

 There are strong parallels between conventional CCD-based fluorescence microscopy 

and PALM, and understanding these parallels helps us benefit from established practices in 

conventional image rendering. In particular, we find the concept of a "PALM PSF" useful: Just 

as repeated measurements of photoelectron positions from a constant intensity, isolated 

fluorescent point emitter give the point-spread-function (PSF) of a conventional microscope, 

repeated measurements of localization positions from a constant intensity, isolated fluorescent 

point source give the PSF of a PALM microscope. Our definition of a PALM PSF is equivalent 

to the conventional definition of localization precision; any model that accurately predicts the 

localization precision must predict the same spread as that observed in repeated localizations. We 

note that there are many parallels between conventional fluorescence imaging and PALM 

imaging, summarized in Supplementary Table 1.  

PALM data is very similar to a conventional fluorescent image, with a  

 smaller PSF volume but typically many fewer measurements per PSF volume. Data recorded 

from a conventional fluorescence microscope represents photoelectron counts as a histogram, 

displaying captured fluorescence intensity vs. position. Similarly, a PALM dataset which is too 

dense to show clearly as a scatterplot with error bars can be represented as a histogram that 

displays localization density vs. position. Plotting the PALM image this way abandons the error 

bars, just as a conventional fluorescence image does. In both types of image histograms, bin-to-

bin fluctuations substantially smaller than the measurement PSF cannot be due to structures in 

the sample, and these artifacts can be safely removed by smoothing. 

We find a bin size of ~60x60x60 nm for large 3D histograms (~30x30x5 microns), and  

~25x25x25 nm for histograms of smaller subregions is appropriate given our measured 

localization density. Much larger bins degrade imaging resolution. The effect of a bin size that is 



too small is more subtle: while preserving resolution, smaller bins lead to a punctate image that 

is visually confusing at high densities (Supplementary Figure 13).  

 Slight Gaussian smoothing ( = 0.4 pixels) is applied to further diminish the effects of 

counting noise, and we only use localizations within +/- 1.5 m of imaging focus, localized with 

a correlation strength of 0.4 or higher to select for more precise localizations. We note that the 

choice of appropriate image smoothing is qualitative to some degree. We found a useful rule of 

thumb for image smoothing was to examine both the smoothed image and the removed high-

spatial-frequencies, as shown in Supplementary Figure 14. When the removed high-spatial-

frequencies do not show a recognizable image, their removal is unlikely to degrade image 

resolution significantly. 
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